Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
rpvmasum2.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
5 |
|
rpvmasum2.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
6 |
|
rpvmasum2.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
7 |
|
rpvmasum2.w |
⊢ 𝑊 = { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 } |
8 |
|
dchrisum0.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) |
9 |
|
dchrisum0lem1.f |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) |
10 |
7
|
ssrab3 |
⊢ 𝑊 ⊆ ( 𝐷 ∖ { 1 } ) |
11 |
10 8
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐷 ∖ { 1 } ) ) |
12 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
13 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝐷 ∖ { 1 } ) → 𝑋 ≠ 1 ) |
14 |
11 13
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
15 |
|
fveq2 |
⊢ ( 𝑛 = 𝑥 → ( √ ‘ 𝑛 ) = ( √ ‘ 𝑥 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑛 = 𝑥 → ( 1 / ( √ ‘ 𝑛 ) ) = ( 1 / ( √ ‘ 𝑥 ) ) ) |
17 |
|
1nn |
⊢ 1 ∈ ℕ |
18 |
17
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
19 |
|
rpsqrtcl |
⊢ ( 𝑛 ∈ ℝ+ → ( √ ‘ 𝑛 ) ∈ ℝ+ ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ+ ) → ( √ ‘ 𝑛 ) ∈ ℝ+ ) |
21 |
20
|
rprecred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ+ ) → ( 1 / ( √ ‘ 𝑛 ) ) ∈ ℝ ) |
22 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑛 ≤ 𝑥 ) |
23 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
24 |
23
|
rprege0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) ) |
25 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ+ ) |
26 |
25
|
rprege0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
27 |
|
sqrtle |
⊢ ( ( ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( 𝑛 ≤ 𝑥 ↔ ( √ ‘ 𝑛 ) ≤ ( √ ‘ 𝑥 ) ) ) |
28 |
24 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝑛 ≤ 𝑥 ↔ ( √ ‘ 𝑛 ) ≤ ( √ ‘ 𝑥 ) ) ) |
29 |
22 28
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( √ ‘ 𝑛 ) ≤ ( √ ‘ 𝑥 ) ) |
30 |
23
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( √ ‘ 𝑛 ) ∈ ℝ+ ) |
31 |
25
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ℝ+ ) |
32 |
30 31
|
lerecd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( ( √ ‘ 𝑛 ) ≤ ( √ ‘ 𝑥 ) ↔ ( 1 / ( √ ‘ 𝑥 ) ) ≤ ( 1 / ( √ ‘ 𝑛 ) ) ) ) |
33 |
29 32
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 1 / ( √ ‘ 𝑥 ) ) ≤ ( 1 / ( √ ‘ 𝑛 ) ) ) |
34 |
|
sqrtlim |
⊢ ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( √ ‘ 𝑛 ) ) ) ⇝𝑟 0 |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( √ ‘ 𝑛 ) ) ) ⇝𝑟 0 ) |
36 |
|
2fveq3 |
⊢ ( 𝑎 = 𝑛 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝑎 = 𝑛 → ( √ ‘ 𝑎 ) = ( √ ‘ 𝑛 ) ) |
38 |
37
|
oveq2d |
⊢ ( 𝑎 = 𝑛 → ( 1 / ( √ ‘ 𝑎 ) ) = ( 1 / ( √ ‘ 𝑛 ) ) ) |
39 |
36 38
|
oveq12d |
⊢ ( 𝑎 = 𝑛 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( 1 / ( √ ‘ 𝑛 ) ) ) ) |
40 |
39
|
cbvmptv |
⊢ ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( 1 / ( √ ‘ 𝑛 ) ) ) ) |
41 |
1 2 3 4 5 6 12 14 16 18 21 33 35 40
|
dchrisum |
⊢ ( 𝜑 → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / ( √ ‘ 𝑥 ) ) ) ) ) |
42 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ 𝐷 ) |
43 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
45 |
4 1 5 2 42 44
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
47 |
46
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ+ ) |
48 |
47
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ 𝑛 ) ∈ ℝ+ ) |
49 |
48
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ 𝑛 ) ∈ ℂ ) |
50 |
48
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ 𝑛 ) ≠ 0 ) |
51 |
45 49 50
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / ( √ ‘ 𝑛 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( 1 / ( √ ‘ 𝑛 ) ) ) ) |
52 |
51
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / ( √ ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( 1 / ( √ ‘ 𝑛 ) ) ) ) ) |
53 |
36 37
|
oveq12d |
⊢ ( 𝑎 = 𝑛 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / ( √ ‘ 𝑛 ) ) ) |
54 |
53
|
cbvmptv |
⊢ ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / ( √ ‘ 𝑛 ) ) ) |
55 |
9 54
|
eqtri |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / ( √ ‘ 𝑛 ) ) ) |
56 |
52 55 40
|
3eqtr4g |
⊢ ( 𝜑 → 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) |
57 |
56
|
seqeq3d |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) = seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ) |
58 |
57
|
breq1d |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ↔ seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ⇝ 𝑡 ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) → ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ↔ seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ⇝ 𝑡 ) ) |
60 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑥 → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) |
61 |
60
|
fvoveq1d |
⊢ ( 𝑦 = 𝑥 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ) |
62 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( √ ‘ 𝑦 ) = ( √ ‘ 𝑥 ) ) |
63 |
62
|
oveq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑐 / ( √ ‘ 𝑦 ) ) = ( 𝑐 / ( √ ‘ 𝑥 ) ) ) |
64 |
61 63
|
breq12d |
⊢ ( 𝑦 = 𝑥 → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑥 ) ) ) ) |
65 |
64
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑥 ) ) ) |
66 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) |
67 |
66
|
seqeq3d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → seq 1 ( + , 𝐹 ) = seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ) |
68 |
67
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) = ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) ) |
69 |
68
|
fvoveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) = ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ) |
70 |
|
elrege0 |
⊢ ( 𝑐 ∈ ( 0 [,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ 0 ≤ 𝑐 ) ) |
71 |
70
|
simplbi |
⊢ ( 𝑐 ∈ ( 0 [,) +∞ ) → 𝑐 ∈ ℝ ) |
72 |
71
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 𝑐 ∈ ℝ ) |
73 |
72
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 𝑐 ∈ ℂ ) |
74 |
|
1re |
⊢ 1 ∈ ℝ |
75 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) ) |
76 |
74 75
|
ax-mp |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) |
77 |
76
|
simplbi |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 𝑥 ∈ ℝ ) |
78 |
77
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 𝑥 ∈ ℝ ) |
79 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 0 ∈ ℝ ) |
80 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 1 ∈ ℝ ) |
81 |
|
0lt1 |
⊢ 0 < 1 |
82 |
81
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 0 < 1 ) |
83 |
76
|
simprbi |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑥 ) |
84 |
83
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 ) |
85 |
79 80 78 82 84
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 0 < 𝑥 ) |
86 |
78 85
|
elrpd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 𝑥 ∈ ℝ+ ) |
87 |
86
|
rpsqrtcld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( √ ‘ 𝑥 ) ∈ ℝ+ ) |
88 |
87
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( √ ‘ 𝑥 ) ∈ ℂ ) |
89 |
87
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( √ ‘ 𝑥 ) ≠ 0 ) |
90 |
73 88 89
|
divrecd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( 𝑐 / ( √ ‘ 𝑥 ) ) = ( 𝑐 · ( 1 / ( √ ‘ 𝑥 ) ) ) ) |
91 |
69 90
|
breq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑥 ) ) ↔ ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / ( √ ‘ 𝑥 ) ) ) ) ) |
92 |
91
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) → ( ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / ( √ ‘ 𝑥 ) ) ) ) ) |
93 |
65 92
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) → ( ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / ( √ ‘ 𝑥 ) ) ) ) ) |
94 |
59 93
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) → ( ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) ↔ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / ( √ ‘ 𝑥 ) ) ) ) ) ) |
95 |
94
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) ↔ ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / ( √ ‘ 𝑥 ) ) ) ) ) ) |
96 |
95
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) ↔ ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / ( √ ‘ 𝑎 ) ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / ( √ ‘ 𝑥 ) ) ) ) ) ) |
97 |
41 96
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) ) |