Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
9 |
|
dchrisum.2 |
⊢ ( 𝑛 = 𝑥 → 𝐴 = 𝐵 ) |
10 |
|
dchrisum.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
11 |
|
dchrisum.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
12 |
|
dchrisum.5 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
13 |
|
dchrisum.6 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
14 |
|
dchrisum.7 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · 𝐴 ) ) |
15 |
|
dchrisum.9 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
16 |
|
dchrisum.10 |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
17 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
18 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ ) |
20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑋 ∈ 𝐷 ) |
21 |
19
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℤ ) |
22 |
4 1 5 2 20 21
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ∈ ℂ ) |
23 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ) |
24 |
|
nnrp |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℝ+ ) |
25 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑖 / 𝑛 ⦌ 𝐴 |
26 |
25
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ |
27 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑖 → 𝐴 = ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
28 |
27
|
eleq1d |
⊢ ( 𝑛 = 𝑖 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
29 |
26 28
|
rspc |
⊢ ( 𝑖 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
30 |
29
|
impcom |
⊢ ( ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ∧ 𝑖 ∈ ℝ+ ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
31 |
23 24 30
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
32 |
31
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℂ ) |
33 |
22 32
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑖 |
35 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑛 · |
37 |
35 36 25
|
nfov |
⊢ Ⅎ 𝑛 ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
38 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑖 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) |
39 |
38 27
|
oveq12d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · 𝐴 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
40 |
34 37 39 14
|
fvmptf |
⊢ ( ( 𝑖 ∈ ℕ ∧ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
41 |
19 33 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
42 |
41 33
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) |
43 |
17 18 42
|
serf |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
44 |
43
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
45 |
11
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
46 |
45
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℂ ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℂ ) |
48 |
|
id |
⊢ ( 𝑒 ∈ ℝ+ → 𝑒 ∈ ℝ+ ) |
49 |
|
2re |
⊢ 2 ∈ ℝ |
50 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 2 · 𝑅 ) ∈ ℝ ) |
51 |
49 15 50
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑅 ) ∈ ℝ ) |
52 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ℕ ) |
53 |
3 52
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝑁 ) ) |
54 |
|
oveq2 |
⊢ ( 𝑢 = 0 → ( 0 ..^ 𝑢 ) = ( 0 ..^ 0 ) ) |
55 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
56 |
54 55
|
eqtrdi |
⊢ ( 𝑢 = 0 → ( 0 ..^ 𝑢 ) = ∅ ) |
57 |
56
|
sumeq1d |
⊢ ( 𝑢 = 0 → Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ∅ ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) |
58 |
|
sum0 |
⊢ Σ 𝑛 ∈ ∅ ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = 0 |
59 |
57 58
|
eqtrdi |
⊢ ( 𝑢 = 0 → Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = 0 ) |
60 |
59
|
abs00bd |
⊢ ( 𝑢 = 0 → ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) = 0 ) |
61 |
60
|
breq1d |
⊢ ( 𝑢 = 0 → ( ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ↔ 0 ≤ 𝑅 ) ) |
62 |
61
|
rspcv |
⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) → ( ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 → 0 ≤ 𝑅 ) ) |
63 |
53 16 62
|
sylc |
⊢ ( 𝜑 → 0 ≤ 𝑅 ) |
64 |
|
0le2 |
⊢ 0 ≤ 2 |
65 |
|
mulge0 |
⊢ ( ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) → 0 ≤ ( 2 · 𝑅 ) ) |
66 |
49 64 65
|
mpanl12 |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → 0 ≤ ( 2 · 𝑅 ) ) |
67 |
15 63 66
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 2 · 𝑅 ) ) |
68 |
51 67
|
ge0p1rpd |
⊢ ( 𝜑 → ( ( 2 · 𝑅 ) + 1 ) ∈ ℝ+ ) |
69 |
|
rpdivcl |
⊢ ( ( 𝑒 ∈ ℝ+ ∧ ( ( 2 · 𝑅 ) + 1 ) ∈ ℝ+ ) → ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ∈ ℝ+ ) |
70 |
48 68 69
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ∈ ℝ+ ) |
71 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
72 |
47 70 71
|
rlimi |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑚 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) |
73 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 𝑚 ∈ ℝ ) |
74 |
10
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 𝑀 ∈ ℝ ) |
76 |
73 75
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ) |
77 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 0 ∈ ℝ ) |
78 |
10
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 0 < 𝑀 ) |
80 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
81 |
74 80
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
82 |
77 75 76 79 81
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 0 < if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
83 |
76 82
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ ) |
84 |
83
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ ) |
85 |
|
nfv |
⊢ Ⅎ 𝑛 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) |
86 |
|
nfcv |
⊢ Ⅎ 𝑛 abs |
87 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 |
88 |
|
nfcv |
⊢ Ⅎ 𝑛 − |
89 |
|
nfcv |
⊢ Ⅎ 𝑛 0 |
90 |
87 88 89
|
nfov |
⊢ Ⅎ 𝑛 ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) |
91 |
86 90
|
nffv |
⊢ Ⅎ 𝑛 ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) |
92 |
|
nfcv |
⊢ Ⅎ 𝑛 < |
93 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) |
94 |
91 92 93
|
nfbr |
⊢ Ⅎ 𝑛 ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) |
95 |
85 94
|
nfim |
⊢ Ⅎ 𝑛 ( 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) |
96 |
|
breq2 |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( 𝑚 ≤ 𝑛 ↔ 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) |
97 |
|
csbeq1a |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → 𝐴 = ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) |
98 |
97
|
fvoveq1d |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( 𝐴 − 0 ) ) = ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) ) |
99 |
98
|
breq1d |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ↔ ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) |
100 |
96 99
|
imbi12d |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ↔ ( 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) ) |
101 |
95 100
|
rspc |
⊢ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) → ( 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) ) |
102 |
84 101
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℝ+ ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) → ( 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) ) |
103 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑀 ∈ ℝ ) |
104 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
105 |
103 104
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
106 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ) |
107 |
87
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℝ |
108 |
97
|
eleq1d |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( 𝐴 ∈ ℝ ↔ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
109 |
107 108
|
rspc |
⊢ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
110 |
84 106 109
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
111 |
110
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℂ ) |
112 |
111
|
subid1d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) = ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) |
113 |
112
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) = ( abs ‘ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) |
114 |
76
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ) |
115 |
103 80
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
116 |
|
elicopnf |
⊢ ( 𝑀 ∈ ℝ → ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ( 𝑀 [,) +∞ ) ↔ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ∧ 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) |
117 |
103 116
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ( 𝑀 [,) +∞ ) ↔ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ∧ 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) |
118 |
114 115 117
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ( 𝑀 [,) +∞ ) ) |
119 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑁 ∈ ℕ ) |
120 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑋 ∈ 𝐷 ) |
121 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑋 ≠ 1 ) |
122 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑀 ∈ ℕ ) |
123 |
11
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
124 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝜑 ) |
125 |
124 12
|
syl3an1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
126 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
127 |
1 2 119 4 5 6 120 121 9 122 123 125 126 14
|
dchrisumlema |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ → ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ∧ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ( 𝑀 [,) +∞ ) → 0 ≤ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) ) |
128 |
127
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ( 𝑀 [,) +∞ ) → 0 ≤ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) |
129 |
118 128
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 0 ≤ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) |
130 |
110 129
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( abs ‘ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) = ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) |
131 |
113 130
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) = ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) |
132 |
131
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ↔ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) |
133 |
|
rpre |
⊢ ( 𝑒 ∈ ℝ+ → 𝑒 ∈ ℝ ) |
134 |
133
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑒 ∈ ℝ ) |
135 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( 2 · 𝑅 ) + 1 ) ∈ ℝ+ ) |
136 |
110 134 135
|
ltmuldiv2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ↔ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) |
137 |
132 136
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ↔ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) ) |
138 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( 2 · 𝑅 ) ∈ ℝ ) |
139 |
135
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( 2 · 𝑅 ) + 1 ) ∈ ℝ ) |
140 |
138
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( 2 · 𝑅 ) ≤ ( ( 2 · 𝑅 ) + 1 ) ) |
141 |
138 139 110 129 140
|
lemul1ad |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ≤ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) |
142 |
138 110
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
143 |
139 110
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
144 |
|
lelttr |
⊢ ( ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ∧ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ∧ 𝑒 ∈ ℝ ) → ( ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ≤ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∧ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) ) |
145 |
142 143 134 144
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ≤ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∧ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) ) |
146 |
141 145
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) ) |
147 |
137 146
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) ) |
148 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 1 ∈ ℝ ) |
149 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 𝑀 ∈ ℕ ) |
150 |
149
|
nnge1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 1 ≤ 𝑀 ) |
151 |
148 75 76 150 81
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 1 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
152 |
|
flge1nn |
⊢ ( ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ∧ 1 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ) |
153 |
76 151 152
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ) |
154 |
153
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ) |
155 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑁 ∈ ℕ ) |
156 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑋 ∈ 𝐷 ) |
157 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑋 ≠ 1 ) |
158 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑀 ∈ ℕ ) |
159 |
11
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
160 |
12
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
161 |
160
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
162 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
163 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑅 ∈ ℝ ) |
164 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
165 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ ) |
166 |
81
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
167 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ) |
168 |
|
fllep1 |
⊢ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ≤ ( ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) + 1 ) ) |
169 |
167 168
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ≤ ( ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) + 1 ) ) |
170 |
153
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ) |
171 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) |
172 |
1 2 155 4 5 6 156 157 9 158 159 161 162 14 163 164 165 166 169 170 171
|
dchrisumlem2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) |
173 |
172
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) |
174 |
43
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
175 |
|
eluznn |
⊢ ( ( ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑘 ∈ ℕ ) |
176 |
154 175
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑘 ∈ ℕ ) |
177 |
174 176
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
178 |
154
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ) |
179 |
174 178
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ∈ ℂ ) |
180 |
177 179
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ∈ ℂ ) |
181 |
180
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ∈ ℝ ) |
182 |
142
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
183 |
134
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑒 ∈ ℝ ) |
184 |
|
lelttr |
⊢ ( ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ∈ ℝ ∧ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ∧ 𝑒 ∈ ℝ ) → ( ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∧ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
185 |
181 182 183 184
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∧ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
186 |
173 185
|
mpand |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
187 |
186
|
ralrimdva |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 → ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
188 |
|
fveq2 |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) |
189 |
|
fveq2 |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) |
190 |
189
|
oveq2d |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) |
191 |
190
|
fveq2d |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ) |
192 |
191
|
breq1d |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
193 |
188 192
|
raleqbidv |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
194 |
193
|
rspcev |
⊢ ( ( ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) |
195 |
154 187 194
|
syl6an |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) ) |
196 |
147 195
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) ) |
197 |
105 196
|
embantd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) ) |
198 |
102 197
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℝ+ ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) ) |
199 |
198
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) ) |
200 |
72 199
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) |
201 |
200
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) |
202 |
|
seqex |
⊢ seq 1 ( + , 𝐹 ) ∈ V |
203 |
202
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ V ) |
204 |
17 44 201 203
|
caucvg |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
205 |
202
|
eldm |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ ∃ 𝑡 seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) |
206 |
204 205
|
sylib |
⊢ ( 𝜑 → ∃ 𝑡 seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) |
207 |
|
simpr |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) → seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) |
208 |
|
elrege0 |
⊢ ( ( 2 · 𝑅 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 2 · 𝑅 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑅 ) ) ) |
209 |
51 67 208
|
sylanbrc |
⊢ ( 𝜑 → ( 2 · 𝑅 ) ∈ ( 0 [,) +∞ ) ) |
210 |
209
|
adantr |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) → ( 2 · 𝑅 ) ∈ ( 0 [,) +∞ ) ) |
211 |
|
eqid |
⊢ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) = ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) |
212 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
213 |
|
icossre |
⊢ ( ( 𝑀 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑀 [,) +∞ ) ⊆ ℝ ) |
214 |
74 212 213
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 [,) +∞ ) ⊆ ℝ ) |
215 |
214
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑚 ∈ ℝ ) |
216 |
215
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑚 ∈ ℝ ) |
217 |
216
|
flcld |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( ⌊ ‘ 𝑚 ) ∈ ℤ ) |
218 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) |
219 |
43
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
220 |
|
1red |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 1 ∈ ℝ ) |
221 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ∈ ℝ ) |
222 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ∈ ℕ ) |
223 |
222
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 1 ≤ 𝑀 ) |
224 |
|
elicopnf |
⊢ ( 𝑀 ∈ ℝ → ( 𝑚 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑀 ≤ 𝑚 ) ) ) |
225 |
74 224
|
syl |
⊢ ( 𝜑 → ( 𝑚 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑀 ≤ 𝑚 ) ) ) |
226 |
225
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ≤ 𝑚 ) |
227 |
226
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ≤ 𝑚 ) |
228 |
220 221 216 223 227
|
letrd |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 1 ≤ 𝑚 ) |
229 |
|
flge1nn |
⊢ ( ( 𝑚 ∈ ℝ ∧ 1 ≤ 𝑚 ) → ( ⌊ ‘ 𝑚 ) ∈ ℕ ) |
230 |
216 228 229
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( ⌊ ‘ 𝑚 ) ∈ ℕ ) |
231 |
219 230
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ∈ ℂ ) |
232 |
|
nnex |
⊢ ℕ ∈ V |
233 |
232
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ∈ V |
234 |
233
|
a1i |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ∈ V ) |
235 |
219
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
236 |
|
eluznn |
⊢ ( ( ( ⌊ ‘ 𝑚 ) ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑖 ∈ ℕ ) |
237 |
230 236
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑖 ∈ ℕ ) |
238 |
235 237
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ∈ ℂ ) |
239 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) |
240 |
239
|
oveq2d |
⊢ ( 𝑘 = 𝑖 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) |
241 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) |
242 |
|
ovex |
⊢ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ∈ V |
243 |
240 241 242
|
fvmpt3i |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) |
244 |
237 243
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) |
245 |
211 217 218 231 234 238 244
|
climsubc2 |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ⇝ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) |
246 |
232
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ∈ V |
247 |
246
|
a1i |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ∈ V ) |
248 |
|
fvex |
⊢ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ∈ V |
249 |
248
|
fvconst2 |
⊢ ( 𝑖 ∈ ℕ → ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) |
250 |
237 249
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) |
251 |
250
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) |
252 |
244 251
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) |
253 |
231
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ∈ ℂ ) |
254 |
250 253
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) ∈ ℂ ) |
255 |
254 238
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ∈ ℂ ) |
256 |
252 255
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
257 |
240
|
fveq2d |
⊢ ( 𝑘 = 𝑖 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) ) |
258 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) |
259 |
|
fvex |
⊢ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ∈ V |
260 |
257 258 259
|
fvmpt3i |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) ) |
261 |
237 260
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) ) |
262 |
244
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) ) |
263 |
261 262
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( abs ‘ ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) ) ) |
264 |
211 245 247 217 256 263
|
climabs |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ⇝ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ) |
265 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( 2 · 𝑅 ) ∈ ℝ ) |
266 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 0 ∈ ℝ ) |
267 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ∈ ℝ ) |
268 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 0 < 𝑀 ) |
269 |
266 267 215 268 226
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 0 < 𝑚 ) |
270 |
215 269
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑚 ∈ ℝ+ ) |
271 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
272 |
271
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ |
273 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
274 |
273
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
275 |
272 274
|
rspc |
⊢ ( 𝑚 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
276 |
23 275
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
277 |
270 276
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
278 |
277
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
279 |
265 278
|
remulcld |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
280 |
279
|
recnd |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
281 |
|
1z |
⊢ 1 ∈ ℤ |
282 |
17
|
eqimss2i |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℕ |
283 |
282 232
|
climconst2 |
⊢ ( ( ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ⇝ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
284 |
280 281 283
|
sylancl |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ⇝ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
285 |
253 238
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ∈ ℂ ) |
286 |
285
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
287 |
261 286
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) ∈ ℝ ) |
288 |
|
ovex |
⊢ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ V |
289 |
288
|
fvconst2 |
⊢ ( 𝑖 ∈ ℕ → ( ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ‘ 𝑖 ) = ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
290 |
237 289
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ‘ 𝑖 ) = ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
291 |
279
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
292 |
290 291
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ‘ 𝑖 ) ∈ ℝ ) |
293 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝜑 ) |
294 |
293 3
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑁 ∈ ℕ ) |
295 |
293 7
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑋 ∈ 𝐷 ) |
296 |
293 8
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑋 ≠ 1 ) |
297 |
222
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑀 ∈ ℕ ) |
298 |
293 11
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
299 |
293 12
|
syl3an1 |
⊢ ( ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
300 |
293 13
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
301 |
293 15
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑅 ∈ ℝ ) |
302 |
293 16
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
303 |
270
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑚 ∈ ℝ+ ) |
304 |
303
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑚 ∈ ℝ+ ) |
305 |
227
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑀 ≤ 𝑚 ) |
306 |
216
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑚 ∈ ℝ ) |
307 |
|
reflcl |
⊢ ( 𝑚 ∈ ℝ → ( ⌊ ‘ 𝑚 ) ∈ ℝ ) |
308 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑚 ) ∈ ℝ → ( ( ⌊ ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
309 |
306 307 308
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ⌊ ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
310 |
|
flltp1 |
⊢ ( 𝑚 ∈ ℝ → 𝑚 < ( ( ⌊ ‘ 𝑚 ) + 1 ) ) |
311 |
306 310
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑚 < ( ( ⌊ ‘ 𝑚 ) + 1 ) ) |
312 |
306 309 311
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑚 ≤ ( ( ⌊ ‘ 𝑚 ) + 1 ) ) |
313 |
230
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ⌊ ‘ 𝑚 ) ∈ ℕ ) |
314 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) |
315 |
1 2 294 4 5 6 295 296 9 297 298 299 300 14 301 302 304 305 312 313 314
|
dchrisumlem2 |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
316 |
253 238
|
abssubd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ) |
317 |
261 316
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ) |
318 |
315 317 290
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) ≤ ( ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ‘ 𝑖 ) ) |
319 |
211 217 264 284 287 292 318
|
climle |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
320 |
319
|
ralrimiva |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) → ∀ 𝑚 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
321 |
|
oveq1 |
⊢ ( 𝑐 = ( 2 · 𝑅 ) → ( 𝑐 · 𝐵 ) = ( ( 2 · 𝑅 ) · 𝐵 ) ) |
322 |
321
|
breq2d |
⊢ ( 𝑐 = ( 2 · 𝑅 ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · 𝐵 ) ) ) |
323 |
322
|
ralbidv |
⊢ ( 𝑐 = ( 2 · 𝑅 ) → ( ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ↔ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · 𝐵 ) ) ) |
324 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑥 → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) |
325 |
324
|
fvoveq1d |
⊢ ( 𝑚 = 𝑥 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ) |
326 |
|
vex |
⊢ 𝑚 ∈ V |
327 |
326
|
a1i |
⊢ ( 𝑚 = 𝑥 → 𝑚 ∈ V ) |
328 |
|
equequ2 |
⊢ ( 𝑚 = 𝑥 → ( 𝑛 = 𝑚 ↔ 𝑛 = 𝑥 ) ) |
329 |
328
|
biimpa |
⊢ ( ( 𝑚 = 𝑥 ∧ 𝑛 = 𝑚 ) → 𝑛 = 𝑥 ) |
330 |
329 9
|
syl |
⊢ ( ( 𝑚 = 𝑥 ∧ 𝑛 = 𝑚 ) → 𝐴 = 𝐵 ) |
331 |
327 330
|
csbied |
⊢ ( 𝑚 = 𝑥 → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
332 |
331
|
oveq2d |
⊢ ( 𝑚 = 𝑥 → ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = ( ( 2 · 𝑅 ) · 𝐵 ) ) |
333 |
325 332
|
breq12d |
⊢ ( 𝑚 = 𝑥 → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · 𝐵 ) ) ) |
334 |
333
|
cbvralvw |
⊢ ( ∀ 𝑚 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ↔ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · 𝐵 ) ) |
335 |
323 334
|
bitr4di |
⊢ ( 𝑐 = ( 2 · 𝑅 ) → ( ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ↔ ∀ 𝑚 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ) |
336 |
335
|
rspcev |
⊢ ( ( ( 2 · 𝑅 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑚 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) → ∃ 𝑐 ∈ ( 0 [,) +∞ ) ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) |
337 |
210 320 336
|
syl2anc |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) → ∃ 𝑐 ∈ ( 0 [,) +∞ ) ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) |
338 |
|
r19.42v |
⊢ ( ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ↔ ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∃ 𝑐 ∈ ( 0 [,) +∞ ) ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) |
339 |
207 337 338
|
sylanbrc |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) → ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) |
340 |
339
|
ex |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 → ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) ) |
341 |
340
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑡 seq 1 ( + , 𝐹 ) ⇝ 𝑡 → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) ) |
342 |
206 341
|
mpd |
⊢ ( 𝜑 → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) |