Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
9 |
|
dchrisum.2 |
⊢ ( 𝑛 = 𝑥 → 𝐴 = 𝐵 ) |
10 |
|
dchrisum.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
11 |
|
dchrisum.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
12 |
|
dchrisum.5 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
13 |
|
dchrisum.6 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
14 |
|
dchrisum.7 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · 𝐴 ) ) |
15 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ) |
16 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝐼 / 𝑛 ⦌ 𝐴 |
17 |
16
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ∈ ℝ |
18 |
|
csbeq1a |
⊢ ( 𝑛 = 𝐼 → 𝐴 = ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) |
19 |
18
|
eleq1d |
⊢ ( 𝑛 = 𝐼 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
20 |
17 19
|
rspc |
⊢ ( 𝐼 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
21 |
15 20
|
syl5com |
⊢ ( 𝜑 → ( 𝐼 ∈ ℝ+ → ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
22 |
|
eqid |
⊢ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) = ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) |
23 |
10
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
24 |
|
elicopnf |
⊢ ( 𝑀 ∈ ℝ → ( 𝐼 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝐼 ∈ ℝ ∧ 𝑀 ≤ 𝐼 ) ) ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝐼 ∈ ℝ ∧ 𝑀 ≤ 𝐼 ) ) ) |
26 |
25
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝐼 ∈ ℝ ) |
27 |
26
|
flcld |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( ⌊ ‘ 𝐼 ) ∈ ℤ ) |
28 |
27
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℤ ) |
29 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
30 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
31 |
|
nnrp |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℝ+ ) |
32 |
31
|
ssriv |
⊢ ℕ ⊆ ℝ+ |
33 |
|
eqid |
⊢ ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) = ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) |
34 |
33 11
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) = ℝ+ ) |
35 |
32 34
|
sseqtrrid |
⊢ ( 𝜑 → ℕ ⊆ dom ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ) |
36 |
29 30 13 35
|
rlimclim1 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝ 0 ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝ 0 ) |
38 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 0 ∈ ℝ ) |
39 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ∈ ℝ ) |
40 |
10
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 0 < 𝑀 ) |
42 |
25
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ≤ 𝐼 ) |
43 |
38 39 26 41 42
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 0 < 𝐼 ) |
44 |
26 43
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝐼 ∈ ℝ+ ) |
45 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ) |
46 |
44 45 20
|
sylc |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
47 |
46
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ∈ ℂ ) |
48 |
|
ssid |
⊢ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ⊆ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) |
49 |
|
fvex |
⊢ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ∈ V |
50 |
48 49
|
climconst2 |
⊢ ( ( ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ∈ ℂ ∧ ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℤ ) → ( ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { ⦋ 𝐼 / 𝑛 ⦌ 𝐴 } ) ⇝ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) |
51 |
47 28 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { ⦋ 𝐼 / 𝑛 ⦌ 𝐴 } ) ⇝ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) |
52 |
44
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 0 ≤ 𝐼 ) |
53 |
|
flge0nn0 |
⊢ ( ( 𝐼 ∈ ℝ ∧ 0 ≤ 𝐼 ) → ( ⌊ ‘ 𝐼 ) ∈ ℕ0 ) |
54 |
26 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( ⌊ ‘ 𝐼 ) ∈ ℕ0 ) |
55 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ 𝐼 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℕ ) |
56 |
54 55
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℕ ) |
57 |
|
eluznn |
⊢ ( ( ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑖 ∈ ℕ ) |
58 |
56 57
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑖 ∈ ℕ ) |
59 |
58
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑖 ∈ ℝ+ ) |
60 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ) |
61 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑖 / 𝑛 ⦌ 𝐴 |
62 |
61
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ |
63 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑖 → 𝐴 = ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
64 |
63
|
eleq1d |
⊢ ( 𝑛 = 𝑖 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
65 |
62 64
|
rspc |
⊢ ( 𝑖 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
66 |
59 60 65
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
67 |
33
|
fvmpts |
⊢ ( ( 𝑖 ∈ ℝ+ ∧ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) → ( ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ‘ 𝑖 ) = ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
68 |
59 66 67
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ‘ 𝑖 ) = ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
69 |
68 66
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ‘ 𝑖 ) ∈ ℝ ) |
70 |
|
fvconst2g |
⊢ ( ( ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ∈ ℝ ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { ⦋ 𝐼 / 𝑛 ⦌ 𝐴 } ) ‘ 𝑖 ) = ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) |
71 |
46 70
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { ⦋ 𝐼 / 𝑛 ⦌ 𝐴 } ) ‘ 𝑖 ) = ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) |
72 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
73 |
71 72
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { ⦋ 𝐼 / 𝑛 ⦌ 𝐴 } ) ‘ 𝑖 ) ∈ ℝ ) |
74 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝐼 ∈ ℝ+ ) |
75 |
12
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ) → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ) |
76 |
75
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ) |
77 |
76
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ∀ 𝑛 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ) |
78 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ+ |
79 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥 ) |
80 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐵 |
81 |
|
nfcv |
⊢ Ⅎ 𝑛 ≤ |
82 |
80 81 16
|
nfbr |
⊢ Ⅎ 𝑛 𝐵 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 |
83 |
79 82
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) |
84 |
78 83
|
nfralw |
⊢ Ⅎ 𝑛 ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) |
85 |
|
breq2 |
⊢ ( 𝑛 = 𝐼 → ( 𝑀 ≤ 𝑛 ↔ 𝑀 ≤ 𝐼 ) ) |
86 |
|
breq1 |
⊢ ( 𝑛 = 𝐼 → ( 𝑛 ≤ 𝑥 ↔ 𝐼 ≤ 𝑥 ) ) |
87 |
85 86
|
anbi12d |
⊢ ( 𝑛 = 𝐼 → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ↔ ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥 ) ) ) |
88 |
18
|
breq2d |
⊢ ( 𝑛 = 𝐼 → ( 𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) ) |
89 |
87 88
|
imbi12d |
⊢ ( 𝑛 = 𝐼 → ( ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ↔ ( ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) ) ) |
90 |
89
|
ralbidv |
⊢ ( 𝑛 = 𝐼 → ( ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) ) ) |
91 |
84 90
|
rspc |
⊢ ( 𝐼 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) → ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) ) ) |
92 |
74 77 91
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) ) |
93 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑀 ≤ 𝐼 ) |
94 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝐼 ∈ ℝ ) |
95 |
|
reflcl |
⊢ ( 𝐼 ∈ ℝ → ( ⌊ ‘ 𝐼 ) ∈ ℝ ) |
96 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝐼 ) ∈ ℝ → ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℝ ) |
97 |
94 95 96
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℝ ) |
98 |
58
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑖 ∈ ℝ ) |
99 |
|
fllep1 |
⊢ ( 𝐼 ∈ ℝ → 𝐼 ≤ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) |
100 |
26 99
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝐼 ≤ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) |
101 |
100
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝐼 ≤ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) |
102 |
|
eluzle |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) → ( ( ⌊ ‘ 𝐼 ) + 1 ) ≤ 𝑖 ) |
103 |
102
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝐼 ) + 1 ) ≤ 𝑖 ) |
104 |
94 97 98 101 103
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝐼 ≤ 𝑖 ) |
105 |
93 104
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖 ) ) |
106 |
|
breq2 |
⊢ ( 𝑥 = 𝑖 → ( 𝐼 ≤ 𝑥 ↔ 𝐼 ≤ 𝑖 ) ) |
107 |
106
|
anbi2d |
⊢ ( 𝑥 = 𝑖 → ( ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥 ) ↔ ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖 ) ) ) |
108 |
|
eqvisset |
⊢ ( 𝑥 = 𝑖 → 𝑖 ∈ V ) |
109 |
|
equtr2 |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑛 = 𝑖 ) → 𝑥 = 𝑛 ) |
110 |
9
|
equcoms |
⊢ ( 𝑥 = 𝑛 → 𝐴 = 𝐵 ) |
111 |
109 110
|
syl |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑛 = 𝑖 ) → 𝐴 = 𝐵 ) |
112 |
108 111
|
csbied |
⊢ ( 𝑥 = 𝑖 → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
113 |
112
|
eqcomd |
⊢ ( 𝑥 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
114 |
113
|
breq1d |
⊢ ( 𝑥 = 𝑖 → ( 𝐵 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ↔ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) ) |
115 |
107 114
|
imbi12d |
⊢ ( 𝑥 = 𝑖 → ( ( ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) ↔ ( ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖 ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) ) ) |
116 |
115
|
rspcv |
⊢ ( 𝑖 ∈ ℝ+ → ( ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) → ( ( 𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖 ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) ) ) |
117 |
59 92 105 116
|
syl3c |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) |
118 |
117 68 71
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ‘ 𝑖 ) ≤ ( ( ( ℤ≥ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { ⦋ 𝐼 / 𝑛 ⦌ 𝐴 } ) ‘ 𝑖 ) ) |
119 |
22 28 37 51 69 73 118
|
climle |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 0 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) |
120 |
119
|
ex |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 𝑀 [,) +∞ ) → 0 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) ) |
121 |
21 120
|
jca |
⊢ ( 𝜑 → ( ( 𝐼 ∈ ℝ+ → ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ∧ ( 𝐼 ∈ ( 𝑀 [,) +∞ ) → 0 ≤ ⦋ 𝐼 / 𝑛 ⦌ 𝐴 ) ) ) |