Metamath Proof Explorer


Theorem dchrisumlema

Description: Lemma for dchrisum . Lemma 9.4.1 of Shapiro, p. 377. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
rpvmasum.g 𝐺 = ( DChr ‘ 𝑁 )
rpvmasum.d 𝐷 = ( Base ‘ 𝐺 )
rpvmasum.1 1 = ( 0g𝐺 )
dchrisum.b ( 𝜑𝑋𝐷 )
dchrisum.n1 ( 𝜑𝑋1 )
dchrisum.2 ( 𝑛 = 𝑥𝐴 = 𝐵 )
dchrisum.3 ( 𝜑𝑀 ∈ ℕ )
dchrisum.4 ( ( 𝜑𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ )
dchrisum.5 ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ) ∧ ( 𝑀𝑛𝑛𝑥 ) ) → 𝐵𝐴 )
dchrisum.6 ( 𝜑 → ( 𝑛 ∈ ℝ+𝐴 ) ⇝𝑟 0 )
dchrisum.7 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · 𝐴 ) )
Assertion dchrisumlema ( 𝜑 → ( ( 𝐼 ∈ ℝ+ 𝐼 / 𝑛 𝐴 ∈ ℝ ) ∧ ( 𝐼 ∈ ( 𝑀 [,) +∞ ) → 0 ≤ 𝐼 / 𝑛 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
2 rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
3 rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
4 rpvmasum.g 𝐺 = ( DChr ‘ 𝑁 )
5 rpvmasum.d 𝐷 = ( Base ‘ 𝐺 )
6 rpvmasum.1 1 = ( 0g𝐺 )
7 dchrisum.b ( 𝜑𝑋𝐷 )
8 dchrisum.n1 ( 𝜑𝑋1 )
9 dchrisum.2 ( 𝑛 = 𝑥𝐴 = 𝐵 )
10 dchrisum.3 ( 𝜑𝑀 ∈ ℕ )
11 dchrisum.4 ( ( 𝜑𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ )
12 dchrisum.5 ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ) ∧ ( 𝑀𝑛𝑛𝑥 ) ) → 𝐵𝐴 )
13 dchrisum.6 ( 𝜑 → ( 𝑛 ∈ ℝ+𝐴 ) ⇝𝑟 0 )
14 dchrisum.7 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · 𝐴 ) )
15 11 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ )
16 nfcsb1v 𝑛 𝐼 / 𝑛 𝐴
17 16 nfel1 𝑛 𝐼 / 𝑛 𝐴 ∈ ℝ
18 csbeq1a ( 𝑛 = 𝐼𝐴 = 𝐼 / 𝑛 𝐴 )
19 18 eleq1d ( 𝑛 = 𝐼 → ( 𝐴 ∈ ℝ ↔ 𝐼 / 𝑛 𝐴 ∈ ℝ ) )
20 17 19 rspc ( 𝐼 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝐼 / 𝑛 𝐴 ∈ ℝ ) )
21 15 20 syl5com ( 𝜑 → ( 𝐼 ∈ ℝ+ 𝐼 / 𝑛 𝐴 ∈ ℝ ) )
22 eqid ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) = ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) )
23 10 nnred ( 𝜑𝑀 ∈ ℝ )
24 elicopnf ( 𝑀 ∈ ℝ → ( 𝐼 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝐼 ∈ ℝ ∧ 𝑀𝐼 ) ) )
25 23 24 syl ( 𝜑 → ( 𝐼 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝐼 ∈ ℝ ∧ 𝑀𝐼 ) ) )
26 25 simprbda ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝐼 ∈ ℝ )
27 26 flcld ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( ⌊ ‘ 𝐼 ) ∈ ℤ )
28 27 peano2zd ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℤ )
29 nnuz ℕ = ( ℤ ‘ 1 )
30 1zzd ( 𝜑 → 1 ∈ ℤ )
31 nnrp ( 𝑖 ∈ ℕ → 𝑖 ∈ ℝ+ )
32 31 ssriv ℕ ⊆ ℝ+
33 eqid ( 𝑛 ∈ ℝ+𝐴 ) = ( 𝑛 ∈ ℝ+𝐴 )
34 33 11 dmmptd ( 𝜑 → dom ( 𝑛 ∈ ℝ+𝐴 ) = ℝ+ )
35 32 34 sseqtrrid ( 𝜑 → ℕ ⊆ dom ( 𝑛 ∈ ℝ+𝐴 ) )
36 29 30 13 35 rlimclim1 ( 𝜑 → ( 𝑛 ∈ ℝ+𝐴 ) ⇝ 0 )
37 36 adantr ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑛 ∈ ℝ+𝐴 ) ⇝ 0 )
38 0red ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 0 ∈ ℝ )
39 23 adantr ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ∈ ℝ )
40 10 nngt0d ( 𝜑 → 0 < 𝑀 )
41 40 adantr ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 0 < 𝑀 )
42 25 simplbda ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀𝐼 )
43 38 39 26 41 42 ltletrd ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 0 < 𝐼 )
44 26 43 elrpd ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝐼 ∈ ℝ+ )
45 15 adantr ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ )
46 44 45 20 sylc ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝐼 / 𝑛 𝐴 ∈ ℝ )
47 46 recnd ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝐼 / 𝑛 𝐴 ∈ ℂ )
48 ssid ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ⊆ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) )
49 fvex ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ∈ V
50 48 49 climconst2 ( ( 𝐼 / 𝑛 𝐴 ∈ ℂ ∧ ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℤ ) → ( ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { 𝐼 / 𝑛 𝐴 } ) ⇝ 𝐼 / 𝑛 𝐴 )
51 47 28 50 syl2anc ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { 𝐼 / 𝑛 𝐴 } ) ⇝ 𝐼 / 𝑛 𝐴 )
52 44 rpge0d ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 0 ≤ 𝐼 )
53 flge0nn0 ( ( 𝐼 ∈ ℝ ∧ 0 ≤ 𝐼 ) → ( ⌊ ‘ 𝐼 ) ∈ ℕ0 )
54 26 52 53 syl2anc ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( ⌊ ‘ 𝐼 ) ∈ ℕ0 )
55 nn0p1nn ( ( ⌊ ‘ 𝐼 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℕ )
56 54 55 syl ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℕ )
57 eluznn ( ( ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℕ ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑖 ∈ ℕ )
58 56 57 sylan ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑖 ∈ ℕ )
59 58 nnrpd ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑖 ∈ ℝ+ )
60 15 ad2antrr ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ )
61 nfcsb1v 𝑛 𝑖 / 𝑛 𝐴
62 61 nfel1 𝑛 𝑖 / 𝑛 𝐴 ∈ ℝ
63 csbeq1a ( 𝑛 = 𝑖𝐴 = 𝑖 / 𝑛 𝐴 )
64 63 eleq1d ( 𝑛 = 𝑖 → ( 𝐴 ∈ ℝ ↔ 𝑖 / 𝑛 𝐴 ∈ ℝ ) )
65 62 64 rspc ( 𝑖 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝑖 / 𝑛 𝐴 ∈ ℝ ) )
66 59 60 65 sylc ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑖 / 𝑛 𝐴 ∈ ℝ )
67 33 fvmpts ( ( 𝑖 ∈ ℝ+ 𝑖 / 𝑛 𝐴 ∈ ℝ ) → ( ( 𝑛 ∈ ℝ+𝐴 ) ‘ 𝑖 ) = 𝑖 / 𝑛 𝐴 )
68 59 66 67 syl2anc ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( 𝑛 ∈ ℝ+𝐴 ) ‘ 𝑖 ) = 𝑖 / 𝑛 𝐴 )
69 68 66 eqeltrd ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( 𝑛 ∈ ℝ+𝐴 ) ‘ 𝑖 ) ∈ ℝ )
70 fvconst2g ( ( 𝐼 / 𝑛 𝐴 ∈ ℝ ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { 𝐼 / 𝑛 𝐴 } ) ‘ 𝑖 ) = 𝐼 / 𝑛 𝐴 )
71 46 70 sylan ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { 𝐼 / 𝑛 𝐴 } ) ‘ 𝑖 ) = 𝐼 / 𝑛 𝐴 )
72 46 adantr ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝐼 / 𝑛 𝐴 ∈ ℝ )
73 71 72 eqeltrd ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { 𝐼 / 𝑛 𝐴 } ) ‘ 𝑖 ) ∈ ℝ )
74 44 adantr ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝐼 ∈ ℝ+ )
75 12 3expia ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ) ) → ( ( 𝑀𝑛𝑛𝑥 ) → 𝐵𝐴 ) )
76 75 ralrimivva ( 𝜑 → ∀ 𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ( ( 𝑀𝑛𝑛𝑥 ) → 𝐵𝐴 ) )
77 76 ad2antrr ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ∀ 𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ( ( 𝑀𝑛𝑛𝑥 ) → 𝐵𝐴 ) )
78 nfcv 𝑛+
79 nfv 𝑛 ( 𝑀𝐼𝐼𝑥 )
80 nfcv 𝑛 𝐵
81 nfcv 𝑛
82 80 81 16 nfbr 𝑛 𝐵 𝐼 / 𝑛 𝐴
83 79 82 nfim 𝑛 ( ( 𝑀𝐼𝐼𝑥 ) → 𝐵 𝐼 / 𝑛 𝐴 )
84 78 83 nfralw 𝑛𝑥 ∈ ℝ+ ( ( 𝑀𝐼𝐼𝑥 ) → 𝐵 𝐼 / 𝑛 𝐴 )
85 breq2 ( 𝑛 = 𝐼 → ( 𝑀𝑛𝑀𝐼 ) )
86 breq1 ( 𝑛 = 𝐼 → ( 𝑛𝑥𝐼𝑥 ) )
87 85 86 anbi12d ( 𝑛 = 𝐼 → ( ( 𝑀𝑛𝑛𝑥 ) ↔ ( 𝑀𝐼𝐼𝑥 ) ) )
88 18 breq2d ( 𝑛 = 𝐼 → ( 𝐵𝐴𝐵 𝐼 / 𝑛 𝐴 ) )
89 87 88 imbi12d ( 𝑛 = 𝐼 → ( ( ( 𝑀𝑛𝑛𝑥 ) → 𝐵𝐴 ) ↔ ( ( 𝑀𝐼𝐼𝑥 ) → 𝐵 𝐼 / 𝑛 𝐴 ) ) )
90 89 ralbidv ( 𝑛 = 𝐼 → ( ∀ 𝑥 ∈ ℝ+ ( ( 𝑀𝑛𝑛𝑥 ) → 𝐵𝐴 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( 𝑀𝐼𝐼𝑥 ) → 𝐵 𝐼 / 𝑛 𝐴 ) ) )
91 84 90 rspc ( 𝐼 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ( ( 𝑀𝑛𝑛𝑥 ) → 𝐵𝐴 ) → ∀ 𝑥 ∈ ℝ+ ( ( 𝑀𝐼𝐼𝑥 ) → 𝐵 𝐼 / 𝑛 𝐴 ) ) )
92 74 77 91 sylc ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ∀ 𝑥 ∈ ℝ+ ( ( 𝑀𝐼𝐼𝑥 ) → 𝐵 𝐼 / 𝑛 𝐴 ) )
93 42 adantr ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑀𝐼 )
94 26 adantr ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝐼 ∈ ℝ )
95 reflcl ( 𝐼 ∈ ℝ → ( ⌊ ‘ 𝐼 ) ∈ ℝ )
96 peano2re ( ( ⌊ ‘ 𝐼 ) ∈ ℝ → ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℝ )
97 94 95 96 3syl ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝐼 ) + 1 ) ∈ ℝ )
98 58 nnred ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑖 ∈ ℝ )
99 fllep1 ( 𝐼 ∈ ℝ → 𝐼 ≤ ( ( ⌊ ‘ 𝐼 ) + 1 ) )
100 26 99 syl ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 𝐼 ≤ ( ( ⌊ ‘ 𝐼 ) + 1 ) )
101 100 adantr ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝐼 ≤ ( ( ⌊ ‘ 𝐼 ) + 1 ) )
102 eluzle ( 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) → ( ( ⌊ ‘ 𝐼 ) + 1 ) ≤ 𝑖 )
103 102 adantl ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝐼 ) + 1 ) ≤ 𝑖 )
104 94 97 98 101 103 letrd ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝐼𝑖 )
105 93 104 jca ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( 𝑀𝐼𝐼𝑖 ) )
106 breq2 ( 𝑥 = 𝑖 → ( 𝐼𝑥𝐼𝑖 ) )
107 106 anbi2d ( 𝑥 = 𝑖 → ( ( 𝑀𝐼𝐼𝑥 ) ↔ ( 𝑀𝐼𝐼𝑖 ) ) )
108 eqvisset ( 𝑥 = 𝑖𝑖 ∈ V )
109 equtr2 ( ( 𝑥 = 𝑖𝑛 = 𝑖 ) → 𝑥 = 𝑛 )
110 9 equcoms ( 𝑥 = 𝑛𝐴 = 𝐵 )
111 109 110 syl ( ( 𝑥 = 𝑖𝑛 = 𝑖 ) → 𝐴 = 𝐵 )
112 108 111 csbied ( 𝑥 = 𝑖 𝑖 / 𝑛 𝐴 = 𝐵 )
113 112 eqcomd ( 𝑥 = 𝑖𝐵 = 𝑖 / 𝑛 𝐴 )
114 113 breq1d ( 𝑥 = 𝑖 → ( 𝐵 𝐼 / 𝑛 𝐴 𝑖 / 𝑛 𝐴 𝐼 / 𝑛 𝐴 ) )
115 107 114 imbi12d ( 𝑥 = 𝑖 → ( ( ( 𝑀𝐼𝐼𝑥 ) → 𝐵 𝐼 / 𝑛 𝐴 ) ↔ ( ( 𝑀𝐼𝐼𝑖 ) → 𝑖 / 𝑛 𝐴 𝐼 / 𝑛 𝐴 ) ) )
116 115 rspcv ( 𝑖 ∈ ℝ+ → ( ∀ 𝑥 ∈ ℝ+ ( ( 𝑀𝐼𝐼𝑥 ) → 𝐵 𝐼 / 𝑛 𝐴 ) → ( ( 𝑀𝐼𝐼𝑖 ) → 𝑖 / 𝑛 𝐴 𝐼 / 𝑛 𝐴 ) ) )
117 59 92 105 116 syl3c ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → 𝑖 / 𝑛 𝐴 𝐼 / 𝑛 𝐴 )
118 117 68 71 3brtr4d ( ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) ) → ( ( 𝑛 ∈ ℝ+𝐴 ) ‘ 𝑖 ) ≤ ( ( ( ℤ ‘ ( ( ⌊ ‘ 𝐼 ) + 1 ) ) × { 𝐼 / 𝑛 𝐴 } ) ‘ 𝑖 ) )
119 22 28 37 51 69 73 118 climle ( ( 𝜑𝐼 ∈ ( 𝑀 [,) +∞ ) ) → 0 ≤ 𝐼 / 𝑛 𝐴 )
120 119 ex ( 𝜑 → ( 𝐼 ∈ ( 𝑀 [,) +∞ ) → 0 ≤ 𝐼 / 𝑛 𝐴 ) )
121 21 120 jca ( 𝜑 → ( ( 𝐼 ∈ ℝ+ 𝐼 / 𝑛 𝐴 ∈ ℝ ) ∧ ( 𝐼 ∈ ( 𝑀 [,) +∞ ) → 0 ≤ 𝐼 / 𝑛 𝐴 ) ) )