Metamath Proof Explorer


Theorem dchrisumn0

Description: The sum sum_ n e. NN , X ( n ) / n is nonzero for all non-principal Dirichlet characters (i.e. the assumption X e. W is contradictory). This is the key result that allows us to eliminate the conditionals from dchrmusum2 and dchrvmasumif . Lemma 9.4.4 of Shapiro, p. 382. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
dchrmusum.g 𝐺 = ( DChr ‘ 𝑁 )
dchrmusum.d 𝐷 = ( Base ‘ 𝐺 )
dchrmusum.1 1 = ( 0g𝐺 )
dchrmusum.b ( 𝜑𝑋𝐷 )
dchrmusum.n1 ( 𝜑𝑋1 )
dchrmusum.f 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿𝑎 ) ) / 𝑎 ) )
dchrmusum.c ( 𝜑𝐶 ∈ ( 0 [,) +∞ ) )
dchrmusum.t ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑇 )
dchrmusum.2 ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) ≤ ( 𝐶 / 𝑦 ) )
Assertion dchrisumn0 ( 𝜑𝑇 ≠ 0 )

Proof

Step Hyp Ref Expression
1 rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
2 rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
3 rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
4 dchrmusum.g 𝐺 = ( DChr ‘ 𝑁 )
5 dchrmusum.d 𝐷 = ( Base ‘ 𝐺 )
6 dchrmusum.1 1 = ( 0g𝐺 )
7 dchrmusum.b ( 𝜑𝑋𝐷 )
8 dchrmusum.n1 ( 𝜑𝑋1 )
9 dchrmusum.f 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿𝑎 ) ) / 𝑎 ) )
10 dchrmusum.c ( 𝜑𝐶 ∈ ( 0 [,) +∞ ) )
11 dchrmusum.t ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑇 )
12 dchrmusum.2 ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) ≤ ( 𝐶 / 𝑦 ) )
13 3 adantr ( ( 𝜑𝑇 = 0 ) → 𝑁 ∈ ℕ )
14 eqid { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 } = { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 }
15 1 2 3 4 5 6 7 8 9 10 11 12 14 dchrvmaeq0 ( 𝜑 → ( 𝑋 ∈ { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 } ↔ 𝑇 = 0 ) )
16 15 biimpar ( ( 𝜑𝑇 = 0 ) → 𝑋 ∈ { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 } )
17 1 2 13 4 5 6 14 16 dchrisum0 ¬ ( 𝜑𝑇 = 0 )
18 17 imnani ( 𝜑 → ¬ 𝑇 = 0 )
19 18 neqned ( 𝜑𝑇 ≠ 0 )