Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
dchrmusum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
5 |
|
dchrmusum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
6 |
|
dchrmusum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
7 |
|
dchrmusum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
8 |
|
dchrmusum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
9 |
|
dchrmusum.f |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) |
10 |
|
dchrmusum.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
11 |
|
dchrmusum.t |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑇 ) |
12 |
|
dchrmusum.2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) ≤ ( 𝐶 / 𝑦 ) ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → 𝑁 ∈ ℕ ) |
14 |
|
eqid |
⊢ { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 } = { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 } |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 14
|
dchrvmaeq0 |
⊢ ( 𝜑 → ( 𝑋 ∈ { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 } ↔ 𝑇 = 0 ) ) |
16 |
15
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → 𝑋 ∈ { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 } ) |
17 |
1 2 13 4 5 6 14 16
|
dchrisum0 |
⊢ ¬ ( 𝜑 ∧ 𝑇 = 0 ) |
18 |
17
|
imnani |
⊢ ( 𝜑 → ¬ 𝑇 = 0 ) |
19 |
18
|
neqned |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |