Step |
Hyp |
Ref |
Expression |
1 |
|
dchrmhm.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrmhm.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrmhm.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
dchrmul.t |
⊢ · = ( +g ‘ 𝐺 ) |
5 |
|
dchrmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
6 |
|
dchrmul.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) |
7 |
1 3
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
1 2 3 4 8
|
dchrplusg |
⊢ ( 𝜑 → · = ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) ) |
10 |
9
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 𝑌 ) ) |
11 |
5 6
|
ofmresval |
⊢ ( 𝜑 → ( 𝑋 ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 𝑌 ) = ( 𝑋 ∘f · 𝑌 ) ) |
12 |
10 11
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 ∘f · 𝑌 ) ) |