Metamath Proof Explorer


Theorem dchrmul

Description: Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g 𝐺 = ( DChr ‘ 𝑁 )
dchrmhm.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
dchrmhm.b 𝐷 = ( Base ‘ 𝐺 )
dchrmul.t · = ( +g𝐺 )
dchrmul.x ( 𝜑𝑋𝐷 )
dchrmul.y ( 𝜑𝑌𝐷 )
Assertion dchrmul ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋f · 𝑌 ) )

Proof

Step Hyp Ref Expression
1 dchrmhm.g 𝐺 = ( DChr ‘ 𝑁 )
2 dchrmhm.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
3 dchrmhm.b 𝐷 = ( Base ‘ 𝐺 )
4 dchrmul.t · = ( +g𝐺 )
5 dchrmul.x ( 𝜑𝑋𝐷 )
6 dchrmul.y ( 𝜑𝑌𝐷 )
7 1 3 dchrrcl ( 𝑋𝐷𝑁 ∈ ℕ )
8 5 7 syl ( 𝜑𝑁 ∈ ℕ )
9 1 2 3 4 8 dchrplusg ( 𝜑· = ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) )
10 9 oveqd ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 𝑌 ) )
11 5 6 ofmresval ( 𝜑 → ( 𝑋 ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 𝑌 ) = ( 𝑋f · 𝑌 ) )
12 10 11 eqtrd ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋f · 𝑌 ) )