| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrmhm.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 2 |
|
dchrmhm.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 3 |
|
dchrmhm.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 4 |
|
dchrmul.t |
⊢ · = ( +g ‘ 𝐺 ) |
| 5 |
|
dchrmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 6 |
|
dchrmul.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) |
| 7 |
1 2 3 4 5 6
|
dchrmul |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 ∘f · 𝑌 ) ) |
| 8 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 11 |
1 2 3 10 5
|
dchrf |
⊢ ( 𝜑 → 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℂ ) |
| 12 |
1 2 3 10 6
|
dchrf |
⊢ ( 𝜑 → 𝑌 : ( Base ‘ 𝑍 ) ⟶ ℂ ) |
| 13 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑍 ) ∈ V ) |
| 14 |
|
inidm |
⊢ ( ( Base ‘ 𝑍 ) ∩ ( Base ‘ 𝑍 ) ) = ( Base ‘ 𝑍 ) |
| 15 |
9 11 12 13 13 14
|
off |
⊢ ( 𝜑 → ( 𝑋 ∘f · 𝑌 ) : ( Base ‘ 𝑍 ) ⟶ ℂ ) |
| 16 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
| 17 |
10 16
|
unitcl |
⊢ ( 𝑥 ∈ ( Unit ‘ 𝑍 ) → 𝑥 ∈ ( Base ‘ 𝑍 ) ) |
| 18 |
10 16
|
unitcl |
⊢ ( 𝑦 ∈ ( Unit ‘ 𝑍 ) → 𝑦 ∈ ( Base ‘ 𝑍 ) ) |
| 19 |
17 18
|
anim12i |
⊢ ( ( 𝑥 ∈ ( Unit ‘ 𝑍 ) ∧ 𝑦 ∈ ( Unit ‘ 𝑍 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) |
| 20 |
1 3
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
| 21 |
5 20
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 22 |
1 2 10 16 21 3
|
dchrelbas2 |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑍 ) ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) ) |
| 23 |
5 22
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑍 ) ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) |
| 24 |
23
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
| 25 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
| 26 |
25 10
|
mgpbas |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) |
| 27 |
|
eqid |
⊢ ( .r ‘ 𝑍 ) = ( .r ‘ 𝑍 ) |
| 28 |
25 27
|
mgpplusg |
⊢ ( .r ‘ 𝑍 ) = ( +g ‘ ( mulGrp ‘ 𝑍 ) ) |
| 29 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 30 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 31 |
29 30
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 32 |
26 28 31
|
mhmlin |
⊢ ( ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
| 33 |
32
|
3expb |
⊢ ( ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
| 34 |
24 33
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
| 35 |
1 2 10 16 21 3
|
dchrelbas2 |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐷 ↔ ( 𝑌 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑍 ) ( ( 𝑌 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) ) |
| 36 |
6 35
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑍 ) ( ( 𝑌 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) |
| 37 |
36
|
simpld |
⊢ ( 𝜑 → 𝑌 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
| 38 |
26 28 31
|
mhmlin |
⊢ ( ( 𝑌 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) → ( 𝑌 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑌 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑦 ) ) ) |
| 39 |
38
|
3expb |
⊢ ( ( 𝑌 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( 𝑌 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑌 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑦 ) ) ) |
| 40 |
37 39
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( 𝑌 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑌 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑦 ) ) ) |
| 41 |
34 40
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) · ( 𝑌 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) ) = ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) · ( ( 𝑌 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 42 |
11
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) |
| 43 |
42
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) |
| 44 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) → 𝑦 ∈ ( Base ‘ 𝑍 ) ) |
| 45 |
|
ffvelcdm |
⊢ ( ( 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℂ ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) → ( 𝑋 ‘ 𝑦 ) ∈ ℂ ) |
| 46 |
11 44 45
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( 𝑋 ‘ 𝑦 ) ∈ ℂ ) |
| 47 |
12
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( 𝑌 ‘ 𝑥 ) ∈ ℂ ) |
| 48 |
47
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( 𝑌 ‘ 𝑥 ) ∈ ℂ ) |
| 49 |
|
ffvelcdm |
⊢ ( ( 𝑌 : ( Base ‘ 𝑍 ) ⟶ ℂ ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) → ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) |
| 50 |
12 44 49
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) |
| 51 |
43 46 48 50
|
mul4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) · ( ( 𝑌 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑦 ) ) ) = ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑥 ) ) · ( ( 𝑋 ‘ 𝑦 ) · ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 52 |
41 51
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) · ( 𝑌 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) ) = ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑥 ) ) · ( ( 𝑋 ‘ 𝑦 ) · ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 53 |
11
|
ffnd |
⊢ ( 𝜑 → 𝑋 Fn ( Base ‘ 𝑍 ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → 𝑋 Fn ( Base ‘ 𝑍 ) ) |
| 55 |
12
|
ffnd |
⊢ ( 𝜑 → 𝑌 Fn ( Base ‘ 𝑍 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → 𝑌 Fn ( Base ‘ 𝑍 ) ) |
| 57 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( Base ‘ 𝑍 ) ∈ V ) |
| 58 |
21
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 59 |
2
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
| 60 |
|
crngring |
⊢ ( 𝑍 ∈ CRing → 𝑍 ∈ Ring ) |
| 61 |
58 59 60
|
3syl |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 62 |
10 27
|
ringcl |
⊢ ( ( 𝑍 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ ( Base ‘ 𝑍 ) ) |
| 63 |
62
|
3expb |
⊢ ( ( 𝑍 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ ( Base ‘ 𝑍 ) ) |
| 64 |
61 63
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ ( Base ‘ 𝑍 ) ) |
| 65 |
|
fnfvof |
⊢ ( ( ( 𝑋 Fn ( Base ‘ 𝑍 ) ∧ 𝑌 Fn ( Base ‘ 𝑍 ) ) ∧ ( ( Base ‘ 𝑍 ) ∈ V ∧ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ ( Base ‘ 𝑍 ) ) ) → ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) · ( 𝑌 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) ) ) |
| 66 |
54 56 57 64 65
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) · ( 𝑌 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) ) ) |
| 67 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → 𝑋 Fn ( Base ‘ 𝑍 ) ) |
| 68 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → 𝑌 Fn ( Base ‘ 𝑍 ) ) |
| 69 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( Base ‘ 𝑍 ) ∈ V ) |
| 70 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → 𝑥 ∈ ( Base ‘ 𝑍 ) ) |
| 71 |
|
fnfvof |
⊢ ( ( ( 𝑋 Fn ( Base ‘ 𝑍 ) ∧ 𝑌 Fn ( Base ‘ 𝑍 ) ) ∧ ( ( Base ‘ 𝑍 ) ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) ) → ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑥 ) ) ) |
| 72 |
67 68 69 70 71
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑥 ) ) ) |
| 73 |
72
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑥 ) ) ) |
| 74 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑍 ) ) |
| 75 |
|
fnfvof |
⊢ ( ( ( 𝑋 Fn ( Base ‘ 𝑍 ) ∧ 𝑌 Fn ( Base ‘ 𝑍 ) ) ∧ ( ( Base ‘ 𝑍 ) ∈ V ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑦 ) = ( ( 𝑋 ‘ 𝑦 ) · ( 𝑌 ‘ 𝑦 ) ) ) |
| 76 |
54 56 57 74 75
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑦 ) = ( ( 𝑋 ‘ 𝑦 ) · ( 𝑌 ‘ 𝑦 ) ) ) |
| 77 |
73 76
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) · ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑦 ) ) = ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑥 ) ) · ( ( 𝑋 ‘ 𝑦 ) · ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 78 |
52 66 77
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ∧ 𝑦 ∈ ( Base ‘ 𝑍 ) ) ) → ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) · ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑦 ) ) ) |
| 79 |
19 78
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ 𝑍 ) ∧ 𝑦 ∈ ( Unit ‘ 𝑍 ) ) ) → ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) · ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑦 ) ) ) |
| 80 |
79
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Unit ‘ 𝑍 ) ∀ 𝑦 ∈ ( Unit ‘ 𝑍 ) ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) · ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑦 ) ) ) |
| 81 |
|
eqid |
⊢ ( 1r ‘ 𝑍 ) = ( 1r ‘ 𝑍 ) |
| 82 |
10 81
|
ringidcl |
⊢ ( 𝑍 ∈ Ring → ( 1r ‘ 𝑍 ) ∈ ( Base ‘ 𝑍 ) ) |
| 83 |
61 82
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑍 ) ∈ ( Base ‘ 𝑍 ) ) |
| 84 |
|
fnfvof |
⊢ ( ( ( 𝑋 Fn ( Base ‘ 𝑍 ) ∧ 𝑌 Fn ( Base ‘ 𝑍 ) ) ∧ ( ( Base ‘ 𝑍 ) ∈ V ∧ ( 1r ‘ 𝑍 ) ∈ ( Base ‘ 𝑍 ) ) ) → ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 1r ‘ 𝑍 ) ) = ( ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) · ( 𝑌 ‘ ( 1r ‘ 𝑍 ) ) ) ) |
| 85 |
53 55 13 83 84
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 1r ‘ 𝑍 ) ) = ( ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) · ( 𝑌 ‘ ( 1r ‘ 𝑍 ) ) ) ) |
| 86 |
25 81
|
ringidval |
⊢ ( 1r ‘ 𝑍 ) = ( 0g ‘ ( mulGrp ‘ 𝑍 ) ) |
| 87 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 88 |
29 87
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 89 |
86 88
|
mhm0 |
⊢ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
| 90 |
24 89
|
syl |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
| 91 |
86 88
|
mhm0 |
⊢ ( 𝑌 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) → ( 𝑌 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
| 92 |
37 91
|
syl |
⊢ ( 𝜑 → ( 𝑌 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
| 93 |
90 92
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) · ( 𝑌 ‘ ( 1r ‘ 𝑍 ) ) ) = ( 1 · 1 ) ) |
| 94 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 95 |
93 94
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) · ( 𝑌 ‘ ( 1r ‘ 𝑍 ) ) ) = 1 ) |
| 96 |
85 95
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
| 97 |
72
|
neeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 ↔ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑥 ) ) ≠ 0 ) ) |
| 98 |
42 47
|
mulne0bd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ∧ ( 𝑌 ‘ 𝑥 ) ≠ 0 ) ↔ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ 𝑥 ) ) ≠ 0 ) ) |
| 99 |
97 98
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 ↔ ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ∧ ( 𝑌 ‘ 𝑥 ) ≠ 0 ) ) ) |
| 100 |
23
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑍 ) ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) |
| 101 |
100
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) |
| 102 |
101
|
adantrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ∧ ( 𝑌 ‘ 𝑥 ) ≠ 0 ) → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) |
| 103 |
99 102
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) |
| 104 |
103
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑍 ) ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) |
| 105 |
80 96 104
|
3jca |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Unit ‘ 𝑍 ) ∀ 𝑦 ∈ ( Unit ‘ 𝑍 ) ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) · ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑦 ) ) ∧ ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 1r ‘ 𝑍 ) ) = 1 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑍 ) ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) |
| 106 |
1 2 10 16 21 3
|
dchrelbas3 |
⊢ ( 𝜑 → ( ( 𝑋 ∘f · 𝑌 ) ∈ 𝐷 ↔ ( ( 𝑋 ∘f · 𝑌 ) : ( Base ‘ 𝑍 ) ⟶ ℂ ∧ ( ∀ 𝑥 ∈ ( Unit ‘ 𝑍 ) ∀ 𝑦 ∈ ( Unit ‘ 𝑍 ) ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) · ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑦 ) ) ∧ ( ( 𝑋 ∘f · 𝑌 ) ‘ ( 1r ‘ 𝑍 ) ) = 1 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑍 ) ( ( ( 𝑋 ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) ) ) |
| 107 |
15 105 106
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑋 ∘f · 𝑌 ) ∈ 𝐷 ) |
| 108 |
7 107
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐷 ) |