Step |
Hyp |
Ref |
Expression |
1 |
|
dchrmhm.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrmhm.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrmhm.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
dchrn0.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
5 |
|
dchrn0.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
6 |
|
dchr1cl.o |
⊢ 1 = ( 𝑘 ∈ 𝐵 ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) |
7 |
|
dchrmulid2.t |
⊢ · = ( +g ‘ 𝐺 ) |
8 |
|
dchrmulid2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
9 |
1 3
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
11 |
1 2 3 4 5 6 10
|
dchr1cl |
⊢ ( 𝜑 → 1 ∈ 𝐷 ) |
12 |
1 2 3 7 11 8
|
dchrmul |
⊢ ( 𝜑 → ( 1 · 𝑋 ) = ( 1 ∘f · 𝑋 ) ) |
13 |
|
oveq1 |
⊢ ( 1 = if ( 𝑘 ∈ 𝑈 , 1 , 0 ) → ( 1 · ( 𝑋 ‘ 𝑘 ) ) = ( if ( 𝑘 ∈ 𝑈 , 1 , 0 ) · ( 𝑋 ‘ 𝑘 ) ) ) |
14 |
13
|
eqeq1d |
⊢ ( 1 = if ( 𝑘 ∈ 𝑈 , 1 , 0 ) → ( ( 1 · ( 𝑋 ‘ 𝑘 ) ) = ( 𝑋 ‘ 𝑘 ) ↔ ( if ( 𝑘 ∈ 𝑈 , 1 , 0 ) · ( 𝑋 ‘ 𝑘 ) ) = ( 𝑋 ‘ 𝑘 ) ) ) |
15 |
|
oveq1 |
⊢ ( 0 = if ( 𝑘 ∈ 𝑈 , 1 , 0 ) → ( 0 · ( 𝑋 ‘ 𝑘 ) ) = ( if ( 𝑘 ∈ 𝑈 , 1 , 0 ) · ( 𝑋 ‘ 𝑘 ) ) ) |
16 |
15
|
eqeq1d |
⊢ ( 0 = if ( 𝑘 ∈ 𝑈 , 1 , 0 ) → ( ( 0 · ( 𝑋 ‘ 𝑘 ) ) = ( 𝑋 ‘ 𝑘 ) ↔ ( if ( 𝑘 ∈ 𝑈 , 1 , 0 ) · ( 𝑋 ‘ 𝑘 ) ) = ( 𝑋 ‘ 𝑘 ) ) ) |
17 |
1 2 3 4 8
|
dchrf |
⊢ ( 𝜑 → 𝑋 : 𝐵 ⟶ ℂ ) |
18 |
17
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑋 ‘ 𝑘 ) ∈ ℂ ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑘 ) ∈ ℂ ) |
20 |
19
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑘 ∈ 𝑈 ) → ( 1 · ( 𝑋 ‘ 𝑘 ) ) = ( 𝑋 ‘ 𝑘 ) ) |
21 |
|
0cn |
⊢ 0 ∈ ℂ |
22 |
21
|
mul02i |
⊢ ( 0 · 0 ) = 0 |
23 |
1 2 4 5 10 3
|
dchrelbas2 |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑘 ∈ 𝐵 ( ( 𝑋 ‘ 𝑘 ) ≠ 0 → 𝑘 ∈ 𝑈 ) ) ) ) |
24 |
8 23
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑘 ∈ 𝐵 ( ( 𝑋 ‘ 𝑘 ) ≠ 0 → 𝑘 ∈ 𝑈 ) ) ) |
25 |
24
|
simprd |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐵 ( ( 𝑋 ‘ 𝑘 ) ≠ 0 → 𝑘 ∈ 𝑈 ) ) |
26 |
25
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑘 ) ≠ 0 → 𝑘 ∈ 𝑈 ) ) |
27 |
26
|
necon1bd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝑈 → ( 𝑋 ‘ 𝑘 ) = 0 ) ) |
28 |
27
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ ¬ 𝑘 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑘 ) = 0 ) |
29 |
28
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ ¬ 𝑘 ∈ 𝑈 ) → ( 0 · ( 𝑋 ‘ 𝑘 ) ) = ( 0 · 0 ) ) |
30 |
22 29 28
|
3eqtr4a |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ ¬ 𝑘 ∈ 𝑈 ) → ( 0 · ( 𝑋 ‘ 𝑘 ) ) = ( 𝑋 ‘ 𝑘 ) ) |
31 |
14 16 20 30
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( if ( 𝑘 ∈ 𝑈 , 1 , 0 ) · ( 𝑋 ‘ 𝑘 ) ) = ( 𝑋 ‘ 𝑘 ) ) |
32 |
31
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ ( if ( 𝑘 ∈ 𝑈 , 1 , 0 ) · ( 𝑋 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐵 ↦ ( 𝑋 ‘ 𝑘 ) ) ) |
33 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
34 |
33
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
35 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
36 |
35 21
|
ifcli |
⊢ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ∈ ℂ |
37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ∈ ℂ ) |
38 |
6
|
a1i |
⊢ ( 𝜑 → 1 = ( 𝑘 ∈ 𝐵 ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ) |
39 |
17
|
feqmptd |
⊢ ( 𝜑 → 𝑋 = ( 𝑘 ∈ 𝐵 ↦ ( 𝑋 ‘ 𝑘 ) ) ) |
40 |
34 37 18 38 39
|
offval2 |
⊢ ( 𝜑 → ( 1 ∘f · 𝑋 ) = ( 𝑘 ∈ 𝐵 ↦ ( if ( 𝑘 ∈ 𝑈 , 1 , 0 ) · ( 𝑋 ‘ 𝑘 ) ) ) ) |
41 |
32 40 39
|
3eqtr4d |
⊢ ( 𝜑 → ( 1 ∘f · 𝑋 ) = 𝑋 ) |
42 |
12 41
|
eqtrd |
⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |