Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
9 |
|
dchrisumn0.f |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) |
10 |
|
dchrisumn0.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
11 |
|
dchrisumn0.t |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑇 ) |
12 |
|
dchrisumn0.1 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) ≤ ( 𝐶 / 𝑦 ) ) |
13 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
14 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
15 |
|
o1const |
⊢ ( ( ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) ) |
16 |
13 14 15
|
mp2an |
⊢ ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) ) |
18 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℂ ) |
19 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
20 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑋 ∈ 𝐷 ) |
21 |
|
elfzelz |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℤ ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℤ ) |
23 |
4 1 5 2 20 22
|
dchrzrhcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ∈ ℂ ) |
24 |
|
elfznn |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℕ ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℕ ) |
26 |
|
mucl |
⊢ ( 𝑑 ∈ ℕ → ( μ ‘ 𝑑 ) ∈ ℤ ) |
27 |
26
|
zred |
⊢ ( 𝑑 ∈ ℕ → ( μ ‘ 𝑑 ) ∈ ℝ ) |
28 |
|
nndivre |
⊢ ( ( ( μ ‘ 𝑑 ) ∈ ℝ ∧ 𝑑 ∈ ℕ ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℝ ) |
29 |
27 28
|
mpancom |
⊢ ( 𝑑 ∈ ℕ → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℝ ) |
30 |
25 29
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℝ ) |
31 |
30
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℂ ) |
32 |
23 31
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ∈ ℂ ) |
33 |
19 32
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ∈ ℂ ) |
34 |
|
climcl |
⊢ ( seq 1 ( + , 𝐹 ) ⇝ 𝑇 → 𝑇 ∈ ℂ ) |
35 |
11 34
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑇 ∈ ℂ ) |
37 |
33 36
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ∈ ℂ ) |
38 |
13
|
a1i |
⊢ ( 𝜑 → ℝ+ ⊆ ℝ ) |
39 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ∈ ℂ ) → ( 1 − ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) ∈ ℂ ) |
40 |
14 37 39
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 − ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) ∈ ℂ ) |
41 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
42 |
|
elrege0 |
⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
43 |
10 42
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
44 |
43
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
45 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
46 |
32
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ∈ ℂ ) |
47 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
48 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
49 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑋 ∈ 𝐷 ) |
50 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℤ ) |
52 |
4 1 5 2 49 51
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
53 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
55 |
|
nnne0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 ) |
56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ≠ 0 ) |
57 |
52 54 56
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ∈ ℂ ) |
58 |
|
2fveq3 |
⊢ ( 𝑎 = 𝑚 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) |
59 |
|
id |
⊢ ( 𝑎 = 𝑚 → 𝑎 = 𝑚 ) |
60 |
58 59
|
oveq12d |
⊢ ( 𝑎 = 𝑚 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) |
61 |
60
|
cbvmptv |
⊢ ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) |
62 |
9 61
|
eqtri |
⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) |
63 |
57 62
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℂ ) |
64 |
63
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
65 |
47 48 64
|
serf |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
67 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ+ ) |
68 |
67
|
rpred |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
69 |
|
nndivre |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ ) → ( 𝑥 / 𝑑 ) ∈ ℝ ) |
70 |
68 24 69
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑑 ) ∈ ℝ ) |
71 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℕ ) |
72 |
71
|
nncnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℂ ) |
73 |
72
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑑 ) = 𝑑 ) |
74 |
|
fznnfl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝑥 ) ) ) |
75 |
68 74
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝑥 ) ) ) |
76 |
75
|
simplbda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ≤ 𝑥 ) |
77 |
73 76
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑑 ) ≤ 𝑥 ) |
78 |
|
1red |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
79 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
80 |
71
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℝ+ ) |
81 |
78 79 80
|
lemuldivd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 · 𝑑 ) ≤ 𝑥 ↔ 1 ≤ ( 𝑥 / 𝑑 ) ) ) |
82 |
77 81
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ≤ ( 𝑥 / 𝑑 ) ) |
83 |
|
flge1nn |
⊢ ( ( ( 𝑥 / 𝑑 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑑 ) ) → ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ∈ ℕ ) |
84 |
70 82 83
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ∈ ℕ ) |
85 |
66 84
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ∈ ℂ ) |
86 |
46 85
|
mulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) ∈ ℂ ) |
87 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑇 ∈ ℂ ) |
88 |
46 87
|
mulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ∈ ℂ ) |
89 |
45 86 88
|
fsumsub |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) − ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) = ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) − Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) ) |
90 |
46 85 87
|
subdid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) = ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) − ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) ) |
91 |
90
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) − ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) ) |
92 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑋 ∈ 𝐷 ) |
93 |
21
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ∈ ℤ ) |
94 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) → 𝑚 ∈ ℤ ) |
95 |
94
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑚 ∈ ℤ ) |
96 |
4 1 5 2 92 93 95
|
dchrzrhmul |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ) |
97 |
96
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) ) |
98 |
23
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ∈ ℂ ) |
99 |
98
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ∈ ℂ ) |
100 |
72
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ∈ ℂ ) |
101 |
4 1 5 2 92 95
|
dchrzrhcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
102 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) → 𝑚 ∈ ℕ ) |
103 |
102
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑚 ∈ ℕ ) |
104 |
103
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑚 ∈ ℂ ) |
105 |
71
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ≠ 0 ) |
106 |
105
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ≠ 0 ) |
107 |
103
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑚 ≠ 0 ) |
108 |
99 100 101 104 106 107
|
divmuldivd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) / 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) ) |
109 |
97 108
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) / 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) ) |
110 |
109
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) ) = ( ( μ ‘ 𝑑 ) · ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) / 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) ) ) |
111 |
71 26
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑑 ) ∈ ℤ ) |
112 |
111
|
zcnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑑 ) ∈ ℂ ) |
113 |
112
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( μ ‘ 𝑑 ) ∈ ℂ ) |
114 |
99 100 106
|
divcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) / 𝑑 ) ∈ ℂ ) |
115 |
101 104 107
|
divcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ∈ ℂ ) |
116 |
113 114 115
|
mulassd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) = ( ( μ ‘ 𝑑 ) · ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) / 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) ) ) |
117 |
113 99 100 106
|
div12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) / 𝑑 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) |
118 |
117
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) ) |
119 |
110 116 118
|
3eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) ) |
120 |
119
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) ) |
121 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ∈ Fin ) |
122 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝜑 ) |
123 |
122 102 57
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ∈ ℂ ) |
124 |
121 46 123
|
fsummulc2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) ) |
125 |
|
ovex |
⊢ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ∈ V |
126 |
60 9 125
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( 𝐹 ‘ 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) |
127 |
103 126
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( 𝐹 ‘ 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) |
128 |
84 47
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
129 |
127 128 123
|
fsumser |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) |
130 |
129
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) ) |
131 |
120 124 130
|
3eqtr2rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) ) ) |
132 |
131
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) ) ) |
133 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) ) |
134 |
|
id |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → 𝑛 = ( 𝑑 · 𝑚 ) ) |
135 |
133 134
|
oveq12d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) ) |
136 |
135
|
oveq2d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) ) = ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) ) ) |
137 |
|
elrabi |
⊢ ( 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } → 𝑑 ∈ ℕ ) |
138 |
137
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑑 ∈ ℕ ) |
139 |
138 26
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℤ ) |
140 |
139
|
zcnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℂ ) |
141 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑋 ∈ 𝐷 ) |
142 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℤ ) |
143 |
142
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℤ ) |
144 |
4 1 5 2 141 143
|
dchrzrhcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
145 |
|
fz1ssnn |
⊢ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ℕ |
146 |
145
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ℕ ) |
147 |
146
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
148 |
147
|
nncnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
149 |
147
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≠ 0 ) |
150 |
144 148 149
|
divcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) ∈ ℂ ) |
151 |
150
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) ∈ ℂ ) |
152 |
140 151
|
mulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) ) ∈ ℂ ) |
153 |
136 68 152
|
dvdsflsumcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) / ( 𝑑 · 𝑚 ) ) ) ) |
154 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 1 ) ) ) |
155 |
|
id |
⊢ ( 𝑛 = 1 → 𝑛 = 1 ) |
156 |
154 155
|
oveq12d |
⊢ ( 𝑛 = 1 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 1 ) ) / 1 ) ) |
157 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ≤ 𝑥 ) |
158 |
|
flge1nn |
⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ ) |
159 |
68 157 158
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ ) |
160 |
159 47
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 1 ) ) |
161 |
|
eluzfz1 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
162 |
160 161
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
163 |
156 45 146 162 150
|
musumsum |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 1 ) ) / 1 ) ) |
164 |
132 153 163
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 1 ) ) / 1 ) ) |
165 |
4 1 5 2 7
|
dchrzrh1 |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 𝐿 ‘ 1 ) ) = 1 ) |
166 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 1 ) ) = 1 ) |
167 |
166
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 1 ) ) / 1 ) = ( 1 / 1 ) ) |
168 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
169 |
167 168
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 1 ) ) / 1 ) = 1 ) |
170 |
164 169
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) ) |
171 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑇 ∈ ℂ ) |
172 |
45 171 46
|
fsummulc1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) |
173 |
170 172
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 1 − ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) = ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) − Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) ) |
174 |
89 91 173
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 1 − ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) |
175 |
174
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( 1 − ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) ) = ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ) |
176 |
85 87
|
subcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ∈ ℂ ) |
177 |
46 176
|
mulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ∈ ℂ ) |
178 |
45 177
|
fsumcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ∈ ℂ ) |
179 |
178
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ∈ ℝ ) |
180 |
177
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ∈ ℝ ) |
181 |
45 180
|
fsumrecl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ∈ ℝ ) |
182 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝐶 ∈ ℝ ) |
183 |
45 177
|
fsumabs |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ≤ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ) |
184 |
|
reflcl |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
185 |
68 184
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
186 |
185 182
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ⌊ ‘ 𝑥 ) · 𝐶 ) ∈ ℝ ) |
187 |
186 67
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑥 ) · 𝐶 ) / 𝑥 ) ∈ ℝ ) |
188 |
182 67
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝐶 / 𝑥 ) ∈ ℝ ) |
189 |
188
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 / 𝑥 ) ∈ ℝ ) |
190 |
46
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) ∈ ℝ ) |
191 |
71
|
nnrecred |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑑 ) ∈ ℝ ) |
192 |
176
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ∈ ℝ ) |
193 |
80
|
rpred |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℝ ) |
194 |
189 193
|
remulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝐶 / 𝑥 ) · 𝑑 ) ∈ ℝ ) |
195 |
46
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) ) |
196 |
176
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) |
197 |
98
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ) ∈ ℝ ) |
198 |
31
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℂ ) |
199 |
198
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ∈ ℝ ) |
200 |
98
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ) ) |
201 |
198
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) |
202 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
203 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑋 ∈ 𝐷 ) |
204 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
205 |
1 202 2
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) ) |
206 |
|
fof |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
207 |
204 205 206
|
3syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
208 |
207
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
209 |
|
ffvelrn |
⊢ ( ( 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ∧ 𝑑 ∈ ℤ ) → ( 𝐿 ‘ 𝑑 ) ∈ ( Base ‘ 𝑍 ) ) |
210 |
208 21 209
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐿 ‘ 𝑑 ) ∈ ( Base ‘ 𝑍 ) ) |
211 |
4 5 1 202 203 210
|
dchrabs2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ) ≤ 1 ) |
212 |
112 72 105
|
absdivd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) = ( ( abs ‘ ( μ ‘ 𝑑 ) ) / ( abs ‘ 𝑑 ) ) ) |
213 |
80
|
rprege0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑑 ∈ ℝ ∧ 0 ≤ 𝑑 ) ) |
214 |
|
absid |
⊢ ( ( 𝑑 ∈ ℝ ∧ 0 ≤ 𝑑 ) → ( abs ‘ 𝑑 ) = 𝑑 ) |
215 |
213 214
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ 𝑑 ) = 𝑑 ) |
216 |
215
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( μ ‘ 𝑑 ) ) / ( abs ‘ 𝑑 ) ) = ( ( abs ‘ ( μ ‘ 𝑑 ) ) / 𝑑 ) ) |
217 |
212 216
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) = ( ( abs ‘ ( μ ‘ 𝑑 ) ) / 𝑑 ) ) |
218 |
112
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑑 ) ) ∈ ℝ ) |
219 |
|
mule1 |
⊢ ( 𝑑 ∈ ℕ → ( abs ‘ ( μ ‘ 𝑑 ) ) ≤ 1 ) |
220 |
71 219
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑑 ) ) ≤ 1 ) |
221 |
218 78 80 220
|
lediv1dd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( μ ‘ 𝑑 ) ) / 𝑑 ) ≤ ( 1 / 𝑑 ) ) |
222 |
217 221
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ≤ ( 1 / 𝑑 ) ) |
223 |
197 78 199 191 200 201 211 222
|
lemul12ad |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ) · ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) ≤ ( 1 · ( 1 / 𝑑 ) ) ) |
224 |
98 198
|
absmuld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) = ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ) · ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) ) |
225 |
191
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑑 ) ∈ ℂ ) |
226 |
225
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · ( 1 / 𝑑 ) ) = ( 1 / 𝑑 ) ) |
227 |
226
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑑 ) = ( 1 · ( 1 / 𝑑 ) ) ) |
228 |
223 224 227
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) ≤ ( 1 / 𝑑 ) ) |
229 |
|
2fveq3 |
⊢ ( 𝑦 = ( 𝑥 / 𝑑 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) |
230 |
229
|
fvoveq1d |
⊢ ( 𝑦 = ( 𝑥 / 𝑑 ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) |
231 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑑 ) → ( 𝐶 / 𝑦 ) = ( 𝐶 / ( 𝑥 / 𝑑 ) ) ) |
232 |
230 231
|
breq12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑑 ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) ≤ ( 𝐶 / 𝑦 ) ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ≤ ( 𝐶 / ( 𝑥 / 𝑑 ) ) ) ) |
233 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) ≤ ( 𝐶 / 𝑦 ) ) |
234 |
|
1re |
⊢ 1 ∈ ℝ |
235 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( ( 𝑥 / 𝑑 ) ∈ ( 1 [,) +∞ ) ↔ ( ( 𝑥 / 𝑑 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑑 ) ) ) ) |
236 |
234 235
|
ax-mp |
⊢ ( ( 𝑥 / 𝑑 ) ∈ ( 1 [,) +∞ ) ↔ ( ( 𝑥 / 𝑑 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑑 ) ) ) |
237 |
70 82 236
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑑 ) ∈ ( 1 [,) +∞ ) ) |
238 |
232 233 237
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ≤ ( 𝐶 / ( 𝑥 / 𝑑 ) ) ) |
239 |
182
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝐶 ∈ ℂ ) |
240 |
239
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐶 ∈ ℂ ) |
241 |
|
rpcnne0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
242 |
241
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
243 |
242
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
244 |
|
divdiv2 |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑑 ∈ ℂ ∧ 𝑑 ≠ 0 ) ) → ( 𝐶 / ( 𝑥 / 𝑑 ) ) = ( ( 𝐶 · 𝑑 ) / 𝑥 ) ) |
245 |
240 243 72 105 244
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 / ( 𝑥 / 𝑑 ) ) = ( ( 𝐶 · 𝑑 ) / 𝑥 ) ) |
246 |
|
div23 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝑑 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( 𝐶 · 𝑑 ) / 𝑥 ) = ( ( 𝐶 / 𝑥 ) · 𝑑 ) ) |
247 |
240 72 243 246
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝐶 · 𝑑 ) / 𝑥 ) = ( ( 𝐶 / 𝑥 ) · 𝑑 ) ) |
248 |
245 247
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 / ( 𝑥 / 𝑑 ) ) = ( ( 𝐶 / 𝑥 ) · 𝑑 ) ) |
249 |
238 248
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ≤ ( ( 𝐶 / 𝑥 ) · 𝑑 ) ) |
250 |
190 191 192 194 195 196 228 249
|
lemul12ad |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) · ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ≤ ( ( 1 / 𝑑 ) · ( ( 𝐶 / 𝑥 ) · 𝑑 ) ) ) |
251 |
46 176
|
absmuld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) = ( ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) · ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ) |
252 |
188
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝐶 / 𝑥 ) ∈ ℂ ) |
253 |
252
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 / 𝑥 ) ∈ ℂ ) |
254 |
253 72 105
|
divcan4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝐶 / 𝑥 ) · 𝑑 ) / 𝑑 ) = ( 𝐶 / 𝑥 ) ) |
255 |
253 72
|
mulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝐶 / 𝑥 ) · 𝑑 ) ∈ ℂ ) |
256 |
255 72 105
|
divrec2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝐶 / 𝑥 ) · 𝑑 ) / 𝑑 ) = ( ( 1 / 𝑑 ) · ( ( 𝐶 / 𝑥 ) · 𝑑 ) ) ) |
257 |
254 256
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 / 𝑥 ) = ( ( 1 / 𝑑 ) · ( ( 𝐶 / 𝑥 ) · 𝑑 ) ) ) |
258 |
250 251 257
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ≤ ( 𝐶 / 𝑥 ) ) |
259 |
45 180 189 258
|
fsumle |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ≤ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝐶 / 𝑥 ) ) |
260 |
159
|
nnnn0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
261 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
262 |
260 261
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
263 |
262
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 𝐶 / 𝑥 ) ) = ( ( ⌊ ‘ 𝑥 ) · ( 𝐶 / 𝑥 ) ) ) |
264 |
|
fsumconst |
⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ∧ ( 𝐶 / 𝑥 ) ∈ ℂ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝐶 / 𝑥 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 𝐶 / 𝑥 ) ) ) |
265 |
45 252 264
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝐶 / 𝑥 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 𝐶 / 𝑥 ) ) ) |
266 |
159
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ℂ ) |
267 |
|
divass |
⊢ ( ( ( ⌊ ‘ 𝑥 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( ( ⌊ ‘ 𝑥 ) · 𝐶 ) / 𝑥 ) = ( ( ⌊ ‘ 𝑥 ) · ( 𝐶 / 𝑥 ) ) ) |
268 |
266 239 242 267
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑥 ) · 𝐶 ) / 𝑥 ) = ( ( ⌊ ‘ 𝑥 ) · ( 𝐶 / 𝑥 ) ) ) |
269 |
263 265 268
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝐶 / 𝑥 ) = ( ( ( ⌊ ‘ 𝑥 ) · 𝐶 ) / 𝑥 ) ) |
270 |
259 269
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ≤ ( ( ( ⌊ ‘ 𝑥 ) · 𝐶 ) / 𝑥 ) ) |
271 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
272 |
|
flle |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
273 |
68 272
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
274 |
|
lemul1a |
⊢ ( ( ( ( ⌊ ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) → ( ( ⌊ ‘ 𝑥 ) · 𝐶 ) ≤ ( 𝑥 · 𝐶 ) ) |
275 |
185 68 271 273 274
|
syl31anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ⌊ ‘ 𝑥 ) · 𝐶 ) ≤ ( 𝑥 · 𝐶 ) ) |
276 |
186 182 67
|
ledivmuld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( ( ⌊ ‘ 𝑥 ) · 𝐶 ) / 𝑥 ) ≤ 𝐶 ↔ ( ( ⌊ ‘ 𝑥 ) · 𝐶 ) ≤ ( 𝑥 · 𝐶 ) ) ) |
277 |
275 276
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑥 ) · 𝐶 ) / 𝑥 ) ≤ 𝐶 ) |
278 |
181 187 182 270 277
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ≤ 𝐶 ) |
279 |
179 181 182 183 278
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) − 𝑇 ) ) ) ≤ 𝐶 ) |
280 |
175 279
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( 1 − ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) ) ≤ 𝐶 ) |
281 |
38 40 41 44 280
|
elo1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( 1 − ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) ) ∈ 𝑂(1) ) |
282 |
18 37 281
|
o1dif |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) ∈ 𝑂(1) ) ) |
283 |
17 282
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · 𝑇 ) ) ∈ 𝑂(1) ) |