Step |
Hyp |
Ref |
Expression |
1 |
|
dchrpt.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrpt.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrpt.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
dchrpt.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
5 |
|
dchrpt.1 |
⊢ 1 = ( 1r ‘ 𝑍 ) |
6 |
|
dchrpt.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
7 |
|
dchrpt.n1 |
⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
8 |
|
dchrpt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
9 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) ∧ 𝑤 ∈ Word ( Unit ‘ 𝑍 ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) dom DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ) = ( Unit ‘ 𝑍 ) ) ) → 𝑁 ∈ ℕ ) |
10 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) ∧ 𝑤 ∈ Word ( Unit ‘ 𝑍 ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) dom DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ) = ( Unit ‘ 𝑍 ) ) ) → 𝐴 ≠ 1 ) |
11 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
12 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) = ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) |
13 |
|
eqid |
⊢ ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) = ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑛 = 𝑏 → ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) = ( 𝑏 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) |
15 |
14
|
cbvmptv |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) = ( 𝑏 ∈ ℤ ↦ ( 𝑏 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑘 = 𝑎 → ( 𝑤 ‘ 𝑘 ) = ( 𝑤 ‘ 𝑎 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑘 = 𝑎 → ( 𝑏 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) = ( 𝑏 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑎 ) ) ) |
18 |
17
|
mpteq2dv |
⊢ ( 𝑘 = 𝑎 → ( 𝑏 ∈ ℤ ↦ ( 𝑏 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) = ( 𝑏 ∈ ℤ ↦ ( 𝑏 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑎 ) ) ) ) |
19 |
15 18
|
syl5eq |
⊢ ( 𝑘 = 𝑎 → ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) = ( 𝑏 ∈ ℤ ↦ ( 𝑏 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑎 ) ) ) ) |
20 |
19
|
rneqd |
⊢ ( 𝑘 = 𝑎 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) = ran ( 𝑏 ∈ ℤ ↦ ( 𝑏 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑎 ) ) ) ) |
21 |
20
|
cbvmptv |
⊢ ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) = ( 𝑎 ∈ dom 𝑤 ↦ ran ( 𝑏 ∈ ℤ ↦ ( 𝑏 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑎 ) ) ) ) |
22 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) ∧ 𝑤 ∈ Word ( Unit ‘ 𝑍 ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) dom DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ) = ( Unit ‘ 𝑍 ) ) ) → 𝐴 ∈ ( Unit ‘ 𝑍 ) ) |
23 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) ∧ 𝑤 ∈ Word ( Unit ‘ 𝑍 ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) dom DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ) = ( Unit ‘ 𝑍 ) ) ) → 𝑤 ∈ Word ( Unit ‘ 𝑍 ) ) |
24 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) ∧ 𝑤 ∈ Word ( Unit ‘ 𝑍 ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) dom DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ) = ( Unit ‘ 𝑍 ) ) ) → ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) dom DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ) |
25 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) ∧ 𝑤 ∈ Word ( Unit ‘ 𝑍 ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) dom DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ) = ( Unit ‘ 𝑍 ) ) ) → ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ) = ( Unit ‘ 𝑍 ) ) |
26 |
1 2 3 4 5 9 10 11 12 13 21 22 23 24 25
|
dchrptlem3 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) ∧ 𝑤 ∈ Word ( Unit ‘ 𝑍 ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) dom DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ) = ( Unit ‘ 𝑍 ) ) ) → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |
27 |
26
|
3adantr1 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) ∧ 𝑤 ∈ Word ( Unit ‘ 𝑍 ) ) ∧ ( ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) : dom 𝑤 ⟶ { 𝑢 ∈ ( SubGrp ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ∣ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ↾s 𝑢 ) ∈ ( CycGrp ∩ ran pGrp ) } ∧ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) dom DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ) = ( Unit ‘ 𝑍 ) ) ) → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |
28 |
11 12
|
unitgrpbas |
⊢ ( Unit ‘ 𝑍 ) = ( Base ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) |
29 |
|
eqid |
⊢ { 𝑢 ∈ ( SubGrp ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ∣ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ↾s 𝑢 ) ∈ ( CycGrp ∩ ran pGrp ) } = { 𝑢 ∈ ( SubGrp ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ∣ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ↾s 𝑢 ) ∈ ( CycGrp ∩ ran pGrp ) } |
30 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
31 |
2
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
32 |
11 12
|
unitabl |
⊢ ( 𝑍 ∈ CRing → ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ∈ Abel ) |
33 |
30 31 32
|
3syl |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ∈ Abel ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ∈ Abel ) |
35 |
2 4
|
znfi |
⊢ ( 𝑁 ∈ ℕ → 𝐵 ∈ Fin ) |
36 |
6 35
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
37 |
4 11
|
unitss |
⊢ ( Unit ‘ 𝑍 ) ⊆ 𝐵 |
38 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ ( Unit ‘ 𝑍 ) ⊆ 𝐵 ) → ( Unit ‘ 𝑍 ) ∈ Fin ) |
39 |
36 37 38
|
sylancl |
⊢ ( 𝜑 → ( Unit ‘ 𝑍 ) ∈ Fin ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ( Unit ‘ 𝑍 ) ∈ Fin ) |
41 |
|
eqid |
⊢ ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) = ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) |
42 |
28 29 34 40 13 41
|
ablfac2 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ∃ 𝑤 ∈ Word ( Unit ‘ 𝑍 ) ( ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) : dom 𝑤 ⟶ { 𝑢 ∈ ( SubGrp ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ∣ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ↾s 𝑢 ) ∈ ( CycGrp ∩ ran pGrp ) } ∧ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) dom DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ ( ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) DProd ( 𝑘 ∈ dom 𝑤 ↦ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s ( Unit ‘ 𝑍 ) ) ) ( 𝑤 ‘ 𝑘 ) ) ) ) ) = ( Unit ‘ 𝑍 ) ) ) |
43 |
27 42
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |
44 |
1
|
dchrabl |
⊢ ( 𝑁 ∈ ℕ → 𝐺 ∈ Abel ) |
45 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
46 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
47 |
3 46
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐷 ) |
48 |
6 44 45 47
|
4syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐷 ) |
49 |
|
0ne1 |
⊢ 0 ≠ 1 |
50 |
1 2 3 4 11 48 8
|
dchrn0 |
⊢ ( 𝜑 → ( ( ( 0g ‘ 𝐺 ) ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) ) |
51 |
50
|
necon1bbid |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ ( Unit ‘ 𝑍 ) ↔ ( ( 0g ‘ 𝐺 ) ‘ 𝐴 ) = 0 ) ) |
52 |
51
|
biimpa |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ( ( 0g ‘ 𝐺 ) ‘ 𝐴 ) = 0 ) |
53 |
52
|
neeq1d |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ( ( ( 0g ‘ 𝐺 ) ‘ 𝐴 ) ≠ 1 ↔ 0 ≠ 1 ) ) |
54 |
49 53
|
mpbiri |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ( ( 0g ‘ 𝐺 ) ‘ 𝐴 ) ≠ 1 ) |
55 |
|
fveq1 |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ‘ 𝐴 ) ) |
56 |
55
|
neeq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ( 𝑥 ‘ 𝐴 ) ≠ 1 ↔ ( ( 0g ‘ 𝐺 ) ‘ 𝐴 ) ≠ 1 ) ) |
57 |
56
|
rspcev |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝐷 ∧ ( ( 0g ‘ 𝐺 ) ‘ 𝐴 ) ≠ 1 ) → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |
58 |
48 54 57
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |
59 |
43 58
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ≠ 1 ) |