Step |
Hyp |
Ref |
Expression |
1 |
|
dchrsum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrsum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrsum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
dchrsum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
5 |
|
dchrsum.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
6 |
|
dchrsum.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
7 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
8 |
6 7
|
unitss |
⊢ ( Unit ‘ 𝑍 ) ⊆ 𝐵 |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( Unit ‘ 𝑍 ) ⊆ 𝐵 ) |
10 |
1 2 3 6 5
|
dchrf |
⊢ ( 𝜑 → 𝑋 : 𝐵 ⟶ ℂ ) |
11 |
8
|
sseli |
⊢ ( 𝑎 ∈ ( Unit ‘ 𝑍 ) → 𝑎 ∈ 𝐵 ) |
12 |
|
ffvelrn |
⊢ ( ( 𝑋 : 𝐵 ⟶ ℂ ∧ 𝑎 ∈ 𝐵 ) → ( 𝑋 ‘ 𝑎 ) ∈ ℂ ) |
13 |
10 11 12
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Unit ‘ 𝑍 ) ) → ( 𝑋 ‘ 𝑎 ) ∈ ℂ ) |
14 |
|
eldif |
⊢ ( 𝑎 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑍 ) ) ↔ ( 𝑎 ∈ 𝐵 ∧ ¬ 𝑎 ∈ ( Unit ‘ 𝑍 ) ) ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑋 ∈ 𝐷 ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
17 |
1 2 3 6 7 15 16
|
dchrn0 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑎 ) ≠ 0 ↔ 𝑎 ∈ ( Unit ‘ 𝑍 ) ) ) |
18 |
17
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑎 ) ≠ 0 → 𝑎 ∈ ( Unit ‘ 𝑍 ) ) ) |
19 |
18
|
necon1bd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ¬ 𝑎 ∈ ( Unit ‘ 𝑍 ) → ( 𝑋 ‘ 𝑎 ) = 0 ) ) |
20 |
19
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ ¬ 𝑎 ∈ ( Unit ‘ 𝑍 ) ) ) → ( 𝑋 ‘ 𝑎 ) = 0 ) |
21 |
14 20
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ∖ ( Unit ‘ 𝑍 ) ) ) → ( 𝑋 ‘ 𝑎 ) = 0 ) |
22 |
1 3
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
23 |
2 6
|
znfi |
⊢ ( 𝑁 ∈ ℕ → 𝐵 ∈ Fin ) |
24 |
5 22 23
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
25 |
9 13 21 24
|
fsumss |
⊢ ( 𝜑 → Σ 𝑎 ∈ ( Unit ‘ 𝑍 ) ( 𝑋 ‘ 𝑎 ) = Σ 𝑎 ∈ 𝐵 ( 𝑋 ‘ 𝑎 ) ) |
26 |
1 2 3 4 5 7
|
dchrsum2 |
⊢ ( 𝜑 → Σ 𝑎 ∈ ( Unit ‘ 𝑍 ) ( 𝑋 ‘ 𝑎 ) = if ( 𝑋 = 1 , ( ϕ ‘ 𝑁 ) , 0 ) ) |
27 |
25 26
|
eqtr3d |
⊢ ( 𝜑 → Σ 𝑎 ∈ 𝐵 ( 𝑋 ‘ 𝑎 ) = if ( 𝑋 = 1 , ( ϕ ‘ 𝑁 ) , 0 ) ) |