Step |
Hyp |
Ref |
Expression |
1 |
|
dchrval.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrval.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrval.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
4 |
|
dchrval.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
5 |
|
dchrval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
6 |
|
dchrval.d |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ) |
7 |
|
df-dchr |
⊢ DChr = ( 𝑛 ∈ ℕ ↦ ⦋ ( ℤ/nℤ ‘ 𝑛 ) / 𝑧 ⦌ ⦋ { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 } ) |
8 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑁 ) → ( ℤ/nℤ ‘ 𝑛 ) ∈ V ) |
9 |
|
ovex |
⊢ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∈ V |
10 |
9
|
rabex |
⊢ { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } ∈ V |
11 |
10
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } ∈ V ) |
12 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → 𝐷 = { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑁 ) → 𝑛 = 𝑁 ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑁 ) → ( ℤ/nℤ ‘ 𝑛 ) = ( ℤ/nℤ ‘ 𝑁 ) ) |
15 |
2 14
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑁 ) → 𝑍 = ( ℤ/nℤ ‘ 𝑛 ) ) |
16 |
15
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑁 ) → ( 𝑧 = 𝑍 ↔ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) ) |
17 |
16
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → 𝑧 = 𝑍 ) |
18 |
17
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → ( mulGrp ‘ 𝑧 ) = ( mulGrp ‘ 𝑍 ) ) |
19 |
18
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) = ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
20 |
17
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → ( Base ‘ 𝑧 ) = ( Base ‘ 𝑍 ) ) |
21 |
20 3
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → ( Base ‘ 𝑧 ) = 𝐵 ) |
22 |
17
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → ( Unit ‘ 𝑧 ) = ( Unit ‘ 𝑍 ) ) |
23 |
22 4
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → ( Unit ‘ 𝑧 ) = 𝑈 ) |
24 |
21 23
|
difeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) = ( 𝐵 ∖ 𝑈 ) ) |
25 |
24
|
xpeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) |
26 |
25
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → ( ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 ↔ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 ) ) |
27 |
19 26
|
rabeqbidv |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } = { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ) |
28 |
12 27
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → 𝐷 = { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } ) |
29 |
28
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → ( 𝑏 = 𝐷 ↔ 𝑏 = { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } ) ) |
30 |
29
|
biimpar |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) ∧ 𝑏 = { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } ) → 𝑏 = 𝐷 ) |
31 |
30
|
opeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) ∧ 𝑏 = { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } ) → 〈 ( Base ‘ ndx ) , 𝑏 〉 = 〈 ( Base ‘ ndx ) , 𝐷 〉 ) |
32 |
30
|
sqxpeqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) ∧ 𝑏 = { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } ) → ( 𝑏 × 𝑏 ) = ( 𝐷 × 𝐷 ) ) |
33 |
32
|
reseq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) ∧ 𝑏 = { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } ) → ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) = ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) ) |
34 |
33
|
opeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) ∧ 𝑏 = { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } ) → 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 = 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 〉 ) |
35 |
31 34
|
preq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) ∧ 𝑏 = { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } ) → { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐷 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 〉 } ) |
36 |
11 35
|
csbied |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑁 ) ∧ 𝑧 = ( ℤ/nℤ ‘ 𝑛 ) ) → ⦋ { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐷 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 〉 } ) |
37 |
8 36
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑁 ) → ⦋ ( ℤ/nℤ ‘ 𝑛 ) / 𝑧 ⦌ ⦋ { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐷 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 〉 } ) |
38 |
|
prex |
⊢ { 〈 ( Base ‘ ndx ) , 𝐷 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 〉 } ∈ V |
39 |
38
|
a1i |
⊢ ( 𝜑 → { 〈 ( Base ‘ ndx ) , 𝐷 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 〉 } ∈ V ) |
40 |
7 37 5 39
|
fvmptd2 |
⊢ ( 𝜑 → ( DChr ‘ 𝑁 ) = { 〈 ( Base ‘ ndx ) , 𝐷 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 〉 } ) |
41 |
1 40
|
syl5eq |
⊢ ( 𝜑 → 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐷 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝐷 × 𝐷 ) ) 〉 } ) |