| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
| 9 |
|
dchrvmasumif.f |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) |
| 10 |
|
dchrvmasumif.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 11 |
|
dchrvmasumif.s |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑆 ) |
| 12 |
|
dchrvmasumif.1 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / 𝑦 ) ) |
| 13 |
|
dchrvmaeq0.w |
⊢ 𝑊 = { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 } |
| 14 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝐷 ∖ { 1 } ) ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑋 ≠ 1 ) ) |
| 15 |
7 8 14
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐷 ∖ { 1 } ) ) |
| 16 |
|
fveq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) |
| 17 |
16
|
oveq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) |
| 18 |
17
|
sumeq2sdv |
⊢ ( 𝑦 = 𝑋 → Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) |
| 19 |
18
|
eqeq1d |
⊢ ( 𝑦 = 𝑋 → ( Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 ↔ Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 ) ) |
| 20 |
19 13
|
elrab2 |
⊢ ( 𝑋 ∈ 𝑊 ↔ ( 𝑋 ∈ ( 𝐷 ∖ { 1 } ) ∧ Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 ) ) |
| 21 |
20
|
baib |
⊢ ( 𝑋 ∈ ( 𝐷 ∖ { 1 } ) → ( 𝑋 ∈ 𝑊 ↔ Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 ) ) |
| 22 |
15 21
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑊 ↔ Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 ) ) |
| 23 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 24 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 25 |
|
2fveq3 |
⊢ ( 𝑎 = 𝑚 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) |
| 26 |
|
id |
⊢ ( 𝑎 = 𝑚 → 𝑎 = 𝑚 ) |
| 27 |
25 26
|
oveq12d |
⊢ ( 𝑎 = 𝑚 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) |
| 28 |
|
ovex |
⊢ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ∈ V |
| 29 |
27 9 28
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( 𝐹 ‘ 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ) |
| 31 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑋 ∈ 𝐷 ) |
| 32 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℤ ) |
| 34 |
4 1 5 2 31 33
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
| 35 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 37 |
|
nnne0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ≠ 0 ) |
| 39 |
34 36 38
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) ∈ ℂ ) |
| 40 |
23 24 30 39 11
|
isumclim |
⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 𝑆 ) |
| 41 |
40
|
eqeq1d |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 ↔ 𝑆 = 0 ) ) |
| 42 |
22 41
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑊 ↔ 𝑆 = 0 ) ) |