Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
dchrmusum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
5 |
|
dchrmusum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
6 |
|
dchrmusum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
7 |
|
dchrmusum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
8 |
|
dchrmusum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
9 |
|
dchrmusum.f |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) |
10 |
|
dchrmusum.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
11 |
|
dchrmusum.t |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑇 ) |
12 |
|
dchrmusum.2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) ≤ ( 𝐶 / 𝑦 ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrisumn0 |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑇 ≠ 0 ) |
15 |
|
ifnefalse |
⊢ ( 𝑇 ≠ 0 → if ( 𝑇 = 0 , ( log ‘ 𝑥 ) , 0 ) = 0 ) |
16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → if ( 𝑇 = 0 , ( log ‘ 𝑥 ) , 0 ) = 0 ) |
17 |
16
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + if ( 𝑇 = 0 , ( log ‘ 𝑥 ) , 0 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + 0 ) ) |
18 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
19 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑋 ∈ 𝐷 ) |
20 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℤ ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℤ ) |
22 |
4 1 5 2 19 21
|
dchrzrhcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
23 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
25 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
26 |
|
nndivre |
⊢ ( ( ( Λ ‘ 𝑛 ) ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
27 |
25 26
|
mpancom |
⊢ ( 𝑛 ∈ ℕ → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
28 |
24 27
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
29 |
28
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
30 |
22 29
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
31 |
18 30
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
32 |
31
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + 0 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) |
33 |
17 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + if ( 𝑇 = 0 , ( log ‘ 𝑥 ) , 0 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) |
34 |
33
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + if ( 𝑇 = 0 , ( log ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrvmasumif |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + if ( 𝑇 = 0 , ( log ‘ 𝑥 ) , 0 ) ) ) ∈ 𝑂(1) ) |
36 |
34 35
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) ∈ 𝑂(1) ) |