Metamath Proof Explorer


Theorem dchrvmasumlem1

Description: An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of Shapiro, p. 377. (Contributed by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
rpvmasum.g 𝐺 = ( DChr ‘ 𝑁 )
rpvmasum.d 𝐷 = ( Base ‘ 𝐺 )
rpvmasum.1 1 = ( 0g𝐺 )
dchrisum.b ( 𝜑𝑋𝐷 )
dchrisum.n1 ( 𝜑𝑋1 )
dchrvmasum.a ( 𝜑𝐴 ∈ ℝ+ )
Assertion dchrvmasumlem1 ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) )

Proof

Step Hyp Ref Expression
1 rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
2 rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
3 rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
4 rpvmasum.g 𝐺 = ( DChr ‘ 𝑁 )
5 rpvmasum.d 𝐷 = ( Base ‘ 𝐺 )
6 rpvmasum.1 1 = ( 0g𝐺 )
7 dchrisum.b ( 𝜑𝑋𝐷 )
8 dchrisum.n1 ( 𝜑𝑋1 )
9 dchrvmasum.a ( 𝜑𝐴 ∈ ℝ+ )
10 2fveq3 ( 𝑛 = ( 𝑑 · 𝑚 ) → ( 𝑋 ‘ ( 𝐿𝑛 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) )
11 oveq2 ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( μ ‘ 𝑑 ) / 𝑛 ) = ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) )
12 fvoveq1 ( 𝑛 = ( 𝑑 · 𝑚 ) → ( log ‘ ( 𝑛 / 𝑑 ) ) = ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) )
13 11 12 oveq12d ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) = ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) )
14 10 13 oveq12d ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) )
15 9 rpred ( 𝜑𝐴 ∈ ℝ )
16 7 adantr ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑋𝐷 )
17 elfzelz ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℤ )
18 17 adantl ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℤ )
19 4 1 5 2 16 18 dchrzrhcl ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑋 ‘ ( 𝐿𝑛 ) ) ∈ ℂ )
20 19 adantrr ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → ( 𝑋 ‘ ( 𝐿𝑛 ) ) ∈ ℂ )
21 elrabi ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } → 𝑑 ∈ ℕ )
22 21 ad2antll ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → 𝑑 ∈ ℕ )
23 mucl ( 𝑑 ∈ ℕ → ( μ ‘ 𝑑 ) ∈ ℤ )
24 22 23 syl ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℤ )
25 24 zred ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℝ )
26 elfznn ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ )
27 26 ad2antrl ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → 𝑛 ∈ ℕ )
28 25 27 nndivred ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → ( ( μ ‘ 𝑑 ) / 𝑛 ) ∈ ℝ )
29 28 recnd ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → ( ( μ ‘ 𝑑 ) / 𝑛 ) ∈ ℂ )
30 27 nnrpd ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → 𝑛 ∈ ℝ+ )
31 22 nnrpd ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → 𝑑 ∈ ℝ+ )
32 30 31 rpdivcld ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → ( 𝑛 / 𝑑 ) ∈ ℝ+ )
33 32 relogcld ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℝ )
34 33 recnd ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℂ )
35 29 34 mulcld ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ )
36 20 35 mulcld ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) ∈ ℂ )
37 14 15 36 dvdsflsumcom ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) )
38 vmaf Λ : ℕ ⟶ ℝ
39 38 a1i ( 𝜑 → Λ : ℕ ⟶ ℝ )
40 ax-resscn ℝ ⊆ ℂ
41 fss ( ( Λ : ℕ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → Λ : ℕ ⟶ ℂ )
42 39 40 41 sylancl ( 𝜑 → Λ : ℕ ⟶ ℂ )
43 vmasum ( 𝑚 ∈ ℕ → Σ 𝑖 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } ( Λ ‘ 𝑖 ) = ( log ‘ 𝑚 ) )
44 43 adantl ( ( 𝜑𝑚 ∈ ℕ ) → Σ 𝑖 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } ( Λ ‘ 𝑖 ) = ( log ‘ 𝑚 ) )
45 44 eqcomd ( ( 𝜑𝑚 ∈ ℕ ) → ( log ‘ 𝑚 ) = Σ 𝑖 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } ( Λ ‘ 𝑖 ) )
46 45 mpteq2dva ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ Σ 𝑖 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } ( Λ ‘ 𝑖 ) ) )
47 42 46 muinv ( 𝜑 → Λ = ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) )
48 47 fveq1d ( 𝜑 → ( Λ ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) ‘ 𝑛 ) )
49 sumex Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ∈ V
50 eqid ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) )
51 50 fvmpt2 ( ( 𝑛 ∈ ℕ ∧ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) ‘ 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) )
52 26 49 51 sylancl ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) ‘ 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) )
53 48 52 sylan9eq ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( Λ ‘ 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) )
54 breq1 ( 𝑥 = 𝑑 → ( 𝑥𝑛𝑑𝑛 ) )
55 54 elrab ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ↔ ( 𝑑 ∈ ℕ ∧ 𝑑𝑛 ) )
56 55 simprbi ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } → 𝑑𝑛 )
57 56 adantl ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → 𝑑𝑛 )
58 26 adantl ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ )
59 nndivdvds ( ( 𝑛 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑑𝑛 ↔ ( 𝑛 / 𝑑 ) ∈ ℕ ) )
60 58 21 59 syl2an ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( 𝑑𝑛 ↔ ( 𝑛 / 𝑑 ) ∈ ℕ ) )
61 57 60 mpbid ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( 𝑛 / 𝑑 ) ∈ ℕ )
62 fveq2 ( 𝑚 = ( 𝑛 / 𝑑 ) → ( log ‘ 𝑚 ) = ( log ‘ ( 𝑛 / 𝑑 ) ) )
63 eqid ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) )
64 fvex ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ V
65 62 63 64 fvmpt ( ( 𝑛 / 𝑑 ) ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) = ( log ‘ ( 𝑛 / 𝑑 ) ) )
66 61 65 syl ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) = ( log ‘ ( 𝑛 / 𝑑 ) ) )
67 66 oveq2d ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) = ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) )
68 67 sumeq2dv ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) )
69 53 68 eqtrd ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( Λ ‘ 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) )
70 69 oveq1d ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) / 𝑛 ) )
71 fzfid ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... 𝑛 ) ∈ Fin )
72 dvdsssfz1 ( 𝑛 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ⊆ ( 1 ... 𝑛 ) )
73 58 72 syl ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ⊆ ( 1 ... 𝑛 ) )
74 71 73 ssfid ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ∈ Fin )
75 58 nncnd ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℂ )
76 24 zcnd ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℂ )
77 76 anassrs ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( μ ‘ 𝑑 ) ∈ ℂ )
78 34 anassrs ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℂ )
79 77 78 mulcld ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ )
80 58 nnne0d ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ≠ 0 )
81 74 75 79 80 fsumdivc ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) / 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) / 𝑛 ) )
82 21 adantl ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → 𝑑 ∈ ℕ )
83 82 23 syl ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( μ ‘ 𝑑 ) ∈ ℤ )
84 83 zcnd ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( μ ‘ 𝑑 ) ∈ ℂ )
85 75 adantr ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → 𝑛 ∈ ℂ )
86 80 adantr ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → 𝑛 ≠ 0 )
87 84 78 85 86 div23d ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) / 𝑛 ) = ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) )
88 87 sumeq2dv ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) / 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) )
89 70 81 88 3eqtrd ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) )
90 89 oveq2d ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) )
91 35 anassrs ( ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ )
92 74 19 91 fsummulc2 ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) )
93 90 92 eqtrd ( ( 𝜑𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) )
94 93 sumeq2dv ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) )
95 fzfid ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ∈ Fin )
96 7 adantr ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑋𝐷 )
97 elfzelz ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑑 ∈ ℤ )
98 97 adantl ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℤ )
99 4 1 5 2 96 98 dchrzrhcl ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑋 ‘ ( 𝐿𝑑 ) ) ∈ ℂ )
100 fznnfl ( 𝐴 ∈ ℝ → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑𝐴 ) ) )
101 15 100 syl ( 𝜑 → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑𝐴 ) ) )
102 101 simprbda ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℕ )
103 102 23 syl ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( μ ‘ 𝑑 ) ∈ ℤ )
104 103 zred ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( μ ‘ 𝑑 ) ∈ ℝ )
105 104 102 nndivred ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℝ )
106 105 recnd ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℂ )
107 99 106 mulcld ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ∈ ℂ )
108 7 ad2antrr ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑋𝐷 )
109 elfzelz ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) → 𝑚 ∈ ℤ )
110 109 adantl ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℤ )
111 4 1 5 2 108 110 dchrzrhcl ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑋 ‘ ( 𝐿𝑚 ) ) ∈ ℂ )
112 elfznn ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) → 𝑚 ∈ ℕ )
113 112 adantl ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℕ )
114 113 nnrpd ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℝ+ )
115 114 relogcld ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ 𝑚 ) ∈ ℝ )
116 115 113 nndivred ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℝ )
117 116 recnd ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℂ )
118 111 117 mulcld ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ∈ ℂ )
119 95 107 118 fsummulc2 ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) )
120 99 adantr ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑋 ‘ ( 𝐿𝑑 ) ) ∈ ℂ )
121 106 adantr ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℂ )
122 120 121 111 117 mul4d ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = ( ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑑 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) )
123 97 ad2antlr ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑑 ∈ ℤ )
124 4 1 5 2 108 123 110 dchrzrhmul ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) = ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) )
125 104 adantr ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( μ ‘ 𝑑 ) ∈ ℝ )
126 125 recnd ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( μ ‘ 𝑑 ) ∈ ℂ )
127 115 recnd ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ 𝑚 ) ∈ ℂ )
128 102 nnrpd ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℝ+ )
129 128 adantr ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑑 ∈ ℝ+ )
130 129 114 rpmulcld ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑑 · 𝑚 ) ∈ ℝ+ )
131 130 rpcnne0d ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑑 · 𝑚 ) ∈ ℂ ∧ ( 𝑑 · 𝑚 ) ≠ 0 ) )
132 div23 ( ( ( μ ‘ 𝑑 ) ∈ ℂ ∧ ( log ‘ 𝑚 ) ∈ ℂ ∧ ( ( 𝑑 · 𝑚 ) ∈ ℂ ∧ ( 𝑑 · 𝑚 ) ≠ 0 ) ) → ( ( ( μ ‘ 𝑑 ) · ( log ‘ 𝑚 ) ) / ( 𝑑 · 𝑚 ) ) = ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ 𝑚 ) ) )
133 126 127 131 132 syl3anc ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( μ ‘ 𝑑 ) · ( log ‘ 𝑚 ) ) / ( 𝑑 · 𝑚 ) ) = ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ 𝑚 ) ) )
134 129 rpcnne0d ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑑 ∈ ℂ ∧ 𝑑 ≠ 0 ) )
135 114 rpcnne0d ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) )
136 divmuldiv ( ( ( ( μ ‘ 𝑑 ) ∈ ℂ ∧ ( log ‘ 𝑚 ) ∈ ℂ ) ∧ ( ( 𝑑 ∈ ℂ ∧ 𝑑 ≠ 0 ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) ) → ( ( ( μ ‘ 𝑑 ) / 𝑑 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( ( ( μ ‘ 𝑑 ) · ( log ‘ 𝑚 ) ) / ( 𝑑 · 𝑚 ) ) )
137 126 127 134 135 136 syl22anc ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( μ ‘ 𝑑 ) / 𝑑 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( ( ( μ ‘ 𝑑 ) · ( log ‘ 𝑚 ) ) / ( 𝑑 · 𝑚 ) ) )
138 113 nncnd ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℂ )
139 129 rpcnd ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑑 ∈ ℂ )
140 129 rpne0d ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑑 ≠ 0 )
141 138 139 140 divcan3d ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑑 · 𝑚 ) / 𝑑 ) = 𝑚 )
142 141 fveq2d ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) = ( log ‘ 𝑚 ) )
143 142 oveq2d ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) = ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ 𝑚 ) ) )
144 133 137 143 3eqtr4rd ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) = ( ( ( μ ‘ 𝑑 ) / 𝑑 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) )
145 124 144 oveq12d ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) = ( ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑑 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) )
146 122 145 eqtr4d ( ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) )
147 146 sumeq2dv ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) )
148 119 147 eqtrd ( ( 𝜑𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) )
149 148 sumeq2dv ( 𝜑 → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) )
150 37 94 149 3eqtr4d ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) )