Step |
Hyp |
Ref |
Expression |
1 |
|
dchrmhm.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrmhm.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrmhm.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
dchrelbas4.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
5 |
|
dchrzrh1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
6 |
|
dchrzrh1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
8 |
1 2 3 7 5
|
dchrf |
⊢ ( 𝜑 → 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℂ ) |
9 |
1 3
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
10 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
11 |
5 9 10
|
3syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
12 |
2 7 4
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) ) |
13 |
|
fof |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
14 |
11 12 13
|
3syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
15 |
14 6
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐴 ) ∈ ( Base ‘ 𝑍 ) ) |
16 |
8 15
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 𝐿 ‘ 𝐴 ) ) ∈ ℂ ) |