Step |
Hyp |
Ref |
Expression |
1 |
|
1n0 |
⊢ 1o ≠ ∅ |
2 |
|
df-br |
⊢ ( ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) ↔ 〈 ( 𝑓 ‘ 𝑛 ) , ( 𝑓 ‘ suc 𝑛 ) 〉 ∈ { 〈 1o , 1o 〉 } ) |
3 |
|
elsni |
⊢ ( 〈 ( 𝑓 ‘ 𝑛 ) , ( 𝑓 ‘ suc 𝑛 ) 〉 ∈ { 〈 1o , 1o 〉 } → 〈 ( 𝑓 ‘ 𝑛 ) , ( 𝑓 ‘ suc 𝑛 ) 〉 = 〈 1o , 1o 〉 ) |
4 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑛 ) ∈ V |
5 |
|
fvex |
⊢ ( 𝑓 ‘ suc 𝑛 ) ∈ V |
6 |
4 5
|
opth1 |
⊢ ( 〈 ( 𝑓 ‘ 𝑛 ) , ( 𝑓 ‘ suc 𝑛 ) 〉 = 〈 1o , 1o 〉 → ( 𝑓 ‘ 𝑛 ) = 1o ) |
7 |
3 6
|
syl |
⊢ ( 〈 ( 𝑓 ‘ 𝑛 ) , ( 𝑓 ‘ suc 𝑛 ) 〉 ∈ { 〈 1o , 1o 〉 } → ( 𝑓 ‘ 𝑛 ) = 1o ) |
8 |
2 7
|
sylbi |
⊢ ( ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) → ( 𝑓 ‘ 𝑛 ) = 1o ) |
9 |
|
tz6.12i |
⊢ ( 1o ≠ ∅ → ( ( 𝑓 ‘ 𝑛 ) = 1o → 𝑛 𝑓 1o ) ) |
10 |
1 8 9
|
mpsyl |
⊢ ( ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) → 𝑛 𝑓 1o ) |
11 |
|
vex |
⊢ 𝑛 ∈ V |
12 |
|
1oex |
⊢ 1o ∈ V |
13 |
11 12
|
breldm |
⊢ ( 𝑛 𝑓 1o → 𝑛 ∈ dom 𝑓 ) |
14 |
10 13
|
syl |
⊢ ( ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) → 𝑛 ∈ dom 𝑓 ) |
15 |
14
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) → ∀ 𝑛 ∈ ω 𝑛 ∈ dom 𝑓 ) |
16 |
|
dfss3 |
⊢ ( ω ⊆ dom 𝑓 ↔ ∀ 𝑛 ∈ ω 𝑛 ∈ dom 𝑓 ) |
17 |
15 16
|
sylibr |
⊢ ( ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) → ω ⊆ dom 𝑓 ) |
18 |
|
vex |
⊢ 𝑓 ∈ V |
19 |
18
|
dmex |
⊢ dom 𝑓 ∈ V |
20 |
19
|
ssex |
⊢ ( ω ⊆ dom 𝑓 → ω ∈ V ) |
21 |
17 20
|
syl |
⊢ ( ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) → ω ∈ V ) |
22 |
|
snex |
⊢ { 〈 1o , 1o 〉 } ∈ V |
23 |
12 12
|
fvsn |
⊢ ( { 〈 1o , 1o 〉 } ‘ 1o ) = 1o |
24 |
12 12
|
funsn |
⊢ Fun { 〈 1o , 1o 〉 } |
25 |
12
|
snid |
⊢ 1o ∈ { 1o } |
26 |
12
|
dmsnop |
⊢ dom { 〈 1o , 1o 〉 } = { 1o } |
27 |
25 26
|
eleqtrri |
⊢ 1o ∈ dom { 〈 1o , 1o 〉 } |
28 |
|
funbrfvb |
⊢ ( ( Fun { 〈 1o , 1o 〉 } ∧ 1o ∈ dom { 〈 1o , 1o 〉 } ) → ( ( { 〈 1o , 1o 〉 } ‘ 1o ) = 1o ↔ 1o { 〈 1o , 1o 〉 } 1o ) ) |
29 |
24 27 28
|
mp2an |
⊢ ( ( { 〈 1o , 1o 〉 } ‘ 1o ) = 1o ↔ 1o { 〈 1o , 1o 〉 } 1o ) |
30 |
23 29
|
mpbi |
⊢ 1o { 〈 1o , 1o 〉 } 1o |
31 |
|
breq12 |
⊢ ( ( 𝑠 = 1o ∧ 𝑡 = 1o ) → ( 𝑠 { 〈 1o , 1o 〉 } 𝑡 ↔ 1o { 〈 1o , 1o 〉 } 1o ) ) |
32 |
12 12 31
|
spc2ev |
⊢ ( 1o { 〈 1o , 1o 〉 } 1o → ∃ 𝑠 ∃ 𝑡 𝑠 { 〈 1o , 1o 〉 } 𝑡 ) |
33 |
30 32
|
ax-mp |
⊢ ∃ 𝑠 ∃ 𝑡 𝑠 { 〈 1o , 1o 〉 } 𝑡 |
34 |
|
breq |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → ( 𝑠 𝑥 𝑡 ↔ 𝑠 { 〈 1o , 1o 〉 } 𝑡 ) ) |
35 |
34
|
2exbidv |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → ( ∃ 𝑠 ∃ 𝑡 𝑠 𝑥 𝑡 ↔ ∃ 𝑠 ∃ 𝑡 𝑠 { 〈 1o , 1o 〉 } 𝑡 ) ) |
36 |
33 35
|
mpbiri |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → ∃ 𝑠 ∃ 𝑡 𝑠 𝑥 𝑡 ) |
37 |
|
ssid |
⊢ { 1o } ⊆ { 1o } |
38 |
12
|
rnsnop |
⊢ ran { 〈 1o , 1o 〉 } = { 1o } |
39 |
37 38 26
|
3sstr4i |
⊢ ran { 〈 1o , 1o 〉 } ⊆ dom { 〈 1o , 1o 〉 } |
40 |
|
rneq |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → ran 𝑥 = ran { 〈 1o , 1o 〉 } ) |
41 |
|
dmeq |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → dom 𝑥 = dom { 〈 1o , 1o 〉 } ) |
42 |
40 41
|
sseq12d |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → ( ran 𝑥 ⊆ dom 𝑥 ↔ ran { 〈 1o , 1o 〉 } ⊆ dom { 〈 1o , 1o 〉 } ) ) |
43 |
39 42
|
mpbiri |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → ran 𝑥 ⊆ dom 𝑥 ) |
44 |
|
pm5.5 |
⊢ ( ( ∃ 𝑠 ∃ 𝑡 𝑠 𝑥 𝑡 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( ( ( ∃ 𝑠 ∃ 𝑡 𝑠 𝑥 𝑡 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ↔ ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ) |
45 |
36 43 44
|
syl2anc |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → ( ( ( ∃ 𝑠 ∃ 𝑡 𝑠 𝑥 𝑡 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ↔ ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ) |
46 |
|
breq |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → ( ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ↔ ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) ) ) |
47 |
46
|
ralbidv |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → ( ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ↔ ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) ) ) |
48 |
47
|
exbidv |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → ( ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ↔ ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) ) ) |
49 |
45 48
|
bitrd |
⊢ ( 𝑥 = { 〈 1o , 1o 〉 } → ( ( ( ∃ 𝑠 ∃ 𝑡 𝑠 𝑥 𝑡 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ↔ ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) ) ) |
50 |
|
ax-dc |
⊢ ( ( ∃ 𝑠 ∃ 𝑡 𝑠 𝑥 𝑡 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) |
51 |
22 49 50
|
vtocl |
⊢ ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) { 〈 1o , 1o 〉 } ( 𝑓 ‘ suc 𝑛 ) |
52 |
21 51
|
exlimiiv |
⊢ ω ∈ V |