Step |
Hyp |
Ref |
Expression |
1 |
|
dcubic.c |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
2 |
|
dcubic.d |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
3 |
|
dcubic.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
4 |
|
dcubic.t |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
5 |
|
dcubic.3 |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) |
6 |
|
dcubic.g |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
7 |
|
dcubic.2 |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) |
8 |
|
dcubic.m |
⊢ ( 𝜑 → 𝑀 = ( 𝑃 / 3 ) ) |
9 |
|
dcubic.n |
⊢ ( 𝜑 → 𝑁 = ( 𝑄 / 2 ) ) |
10 |
|
dcubic.0 |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → 𝑇 ≠ 0 ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → 𝑇 ∈ ℂ ) |
13 |
|
3z |
⊢ 3 ∈ ℤ |
14 |
|
expne0i |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝑇 ≠ 0 ∧ 3 ∈ ℤ ) → ( 𝑇 ↑ 3 ) ≠ 0 ) |
15 |
13 14
|
mp3an3 |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝑇 ≠ 0 ) → ( 𝑇 ↑ 3 ) ≠ 0 ) |
16 |
15
|
ex |
⊢ ( 𝑇 ∈ ℂ → ( 𝑇 ≠ 0 → ( 𝑇 ↑ 3 ) ≠ 0 ) ) |
17 |
12 16
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ( 𝑇 ≠ 0 → ( 𝑇 ↑ 3 ) ≠ 0 ) ) |
18 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑇 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) |
19 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝐺 ∈ ℂ ) |
20 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) |
21 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑁 = ( 𝑄 / 2 ) ) |
22 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑋 = 0 ) |
23 |
22
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑃 · 𝑋 ) = ( 𝑃 · 0 ) ) |
24 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑃 ∈ ℂ ) |
25 |
24
|
mul01d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑃 · 0 ) = 0 ) |
26 |
23 25
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑃 · 𝑋 ) = 0 ) |
27 |
26
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑃 · 𝑋 ) + 𝑄 ) = ( 0 + 𝑄 ) ) |
28 |
22
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑋 ↑ 3 ) = ( 0 ↑ 3 ) ) |
29 |
|
3nn |
⊢ 3 ∈ ℕ |
30 |
|
0exp |
⊢ ( 3 ∈ ℕ → ( 0 ↑ 3 ) = 0 ) |
31 |
29 30
|
ax-mp |
⊢ ( 0 ↑ 3 ) = 0 |
32 |
28 31
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑋 ↑ 3 ) = 0 ) |
33 |
32
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( 0 + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) ) |
34 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) |
35 |
|
0cnd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 0 ∈ ℂ ) |
36 |
26 35
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑃 · 𝑋 ) ∈ ℂ ) |
37 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑄 ∈ ℂ ) |
38 |
36 37
|
addcld |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑃 · 𝑋 ) + 𝑄 ) ∈ ℂ ) |
39 |
38
|
addid2d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 0 + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) |
40 |
33 34 39
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑃 · 𝑋 ) + 𝑄 ) = 0 ) |
41 |
37
|
addid2d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 0 + 𝑄 ) = 𝑄 ) |
42 |
27 40 41
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑄 = 0 ) |
43 |
42
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑄 / 2 ) = ( 0 / 2 ) ) |
44 |
|
2cn |
⊢ 2 ∈ ℂ |
45 |
|
2ne0 |
⊢ 2 ≠ 0 |
46 |
44 45
|
div0i |
⊢ ( 0 / 2 ) = 0 |
47 |
43 46
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑄 / 2 ) = 0 ) |
48 |
21 47
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑁 = 0 ) |
49 |
48
|
sq0id |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑁 ↑ 2 ) = 0 ) |
50 |
|
3cn |
⊢ 3 ∈ ℂ |
51 |
50
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
52 |
|
3ne0 |
⊢ 3 ≠ 0 |
53 |
52
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
54 |
1 51 53
|
divcld |
⊢ ( 𝜑 → ( 𝑃 / 3 ) ∈ ℂ ) |
55 |
8 54
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑀 ∈ ℂ ) |
57 |
|
4cn |
⊢ 4 ∈ ℂ |
58 |
57
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 4 ∈ ℂ ) |
59 |
|
4ne0 |
⊢ 4 ≠ 0 |
60 |
59
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 4 ≠ 0 ) |
61 |
22
|
sq0id |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑋 ↑ 2 ) = 0 ) |
62 |
61
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) = ( 0 + ( 4 · 𝑀 ) ) ) |
63 |
3
|
sqcld |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
64 |
|
mulcl |
⊢ ( ( 4 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 4 · 𝑀 ) ∈ ℂ ) |
65 |
57 55 64
|
sylancr |
⊢ ( 𝜑 → ( 4 · 𝑀 ) ∈ ℂ ) |
66 |
63 65
|
addcld |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ∈ ℂ ) |
67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ∈ ℂ ) |
68 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) |
69 |
67 68
|
sqr00d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) = 0 ) |
70 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 4 · 𝑀 ) ∈ ℂ ) |
71 |
70
|
addid2d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 0 + ( 4 · 𝑀 ) ) = ( 4 · 𝑀 ) ) |
72 |
62 69 71
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 4 · 𝑀 ) = 0 ) |
73 |
57
|
mul01i |
⊢ ( 4 · 0 ) = 0 |
74 |
72 73
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 4 · 𝑀 ) = ( 4 · 0 ) ) |
75 |
56 35 58 60 74
|
mulcanad |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑀 = 0 ) |
76 |
75
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑀 ↑ 3 ) = ( 0 ↑ 3 ) ) |
77 |
76 31
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑀 ↑ 3 ) = 0 ) |
78 |
49 77
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) = ( 0 + 0 ) ) |
79 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
80 |
78 79
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) = 0 ) |
81 |
20 80
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝐺 ↑ 2 ) = 0 ) |
82 |
19 81
|
sqeq0d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝐺 = 0 ) |
83 |
82 48
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝐺 − 𝑁 ) = ( 0 − 0 ) ) |
84 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
85 |
83 84
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝐺 − 𝑁 ) = 0 ) |
86 |
18 85
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑇 ↑ 3 ) = 0 ) |
87 |
86
|
ex |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ( ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) → ( 𝑇 ↑ 3 ) = 0 ) ) |
88 |
87
|
necon3ad |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ( ( 𝑇 ↑ 3 ) ≠ 0 → ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) ) |
89 |
17 88
|
syld |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ( 𝑇 ≠ 0 → ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) ) |
90 |
11 89
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) |
91 |
|
oveq12 |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = ( 0 + 0 ) ) |
92 |
91 79
|
eqtrdi |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ) |
93 |
|
oveq12 |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = ( 0 − 0 ) ) |
94 |
93 84
|
eqtrdi |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ) |
95 |
92 94
|
jca |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ∧ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ) ) |
96 |
66
|
sqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ∈ ℂ ) |
97 |
|
halfaddsub |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ∈ ℂ ) → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 𝑋 ∧ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ) |
98 |
3 96 97
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 𝑋 ∧ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ) |
99 |
98
|
simpld |
⊢ ( 𝜑 → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 𝑋 ) |
100 |
99
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ↔ 𝑋 = 0 ) ) |
101 |
98
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) |
102 |
101
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ↔ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) |
103 |
100 102
|
anbi12d |
⊢ ( 𝜑 → ( ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ∧ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ) ↔ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) ) |
104 |
95 103
|
syl5ib |
⊢ ( 𝜑 → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) ) |
105 |
104
|
con3d |
⊢ ( 𝜑 → ( ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) → ¬ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) ) ) |
106 |
|
eldifi |
⊢ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) → 𝑢 ∈ ℂ ) |
107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 𝑢 ∈ ℂ ) |
108 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 𝑀 ∈ ℂ ) |
109 |
|
eldifsni |
⊢ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) → 𝑢 ≠ 0 ) |
110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 𝑢 ≠ 0 ) |
111 |
108 107 110
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑀 / 𝑢 ) ∈ ℂ ) |
112 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 𝑋 ∈ ℂ ) |
113 |
107 111 112
|
subaddd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 − ( 𝑀 / 𝑢 ) ) = 𝑋 ↔ ( ( 𝑀 / 𝑢 ) + 𝑋 ) = 𝑢 ) ) |
114 |
|
eqcom |
⊢ ( 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ ( 𝑢 − ( 𝑀 / 𝑢 ) ) = 𝑋 ) |
115 |
|
eqcom |
⊢ ( 𝑢 = ( ( 𝑀 / 𝑢 ) + 𝑋 ) ↔ ( ( 𝑀 / 𝑢 ) + 𝑋 ) = 𝑢 ) |
116 |
113 114 115
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ 𝑢 = ( ( 𝑀 / 𝑢 ) + 𝑋 ) ) ) |
117 |
107
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 ↑ 2 ) ∈ ℂ ) |
118 |
112 107
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑋 · 𝑢 ) ∈ ℂ ) |
119 |
118 108
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑋 · 𝑢 ) + 𝑀 ) ∈ ℂ ) |
120 |
117 119
|
subeq0ad |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) = 0 ↔ ( 𝑢 ↑ 2 ) = ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) ) |
121 |
107
|
sqvald |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 ↑ 2 ) = ( 𝑢 · 𝑢 ) ) |
122 |
111 112 107
|
adddird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑀 / 𝑢 ) + 𝑋 ) · 𝑢 ) = ( ( ( 𝑀 / 𝑢 ) · 𝑢 ) + ( 𝑋 · 𝑢 ) ) ) |
123 |
108 107 110
|
divcan1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑀 / 𝑢 ) · 𝑢 ) = 𝑀 ) |
124 |
123
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑀 / 𝑢 ) · 𝑢 ) + ( 𝑋 · 𝑢 ) ) = ( 𝑀 + ( 𝑋 · 𝑢 ) ) ) |
125 |
108 118
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑀 + ( 𝑋 · 𝑢 ) ) = ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) |
126 |
122 124 125
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑋 · 𝑢 ) + 𝑀 ) = ( ( ( 𝑀 / 𝑢 ) + 𝑋 ) · 𝑢 ) ) |
127 |
121 126
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 ↑ 2 ) = ( ( 𝑋 · 𝑢 ) + 𝑀 ) ↔ ( 𝑢 · 𝑢 ) = ( ( ( 𝑀 / 𝑢 ) + 𝑋 ) · 𝑢 ) ) ) |
128 |
111 112
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑀 / 𝑢 ) + 𝑋 ) ∈ ℂ ) |
129 |
107 128 107 110
|
mulcan2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 · 𝑢 ) = ( ( ( 𝑀 / 𝑢 ) + 𝑋 ) · 𝑢 ) ↔ 𝑢 = ( ( 𝑀 / 𝑢 ) + 𝑋 ) ) ) |
130 |
120 127 129
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) = 0 ↔ 𝑢 = ( ( 𝑀 / 𝑢 ) + 𝑋 ) ) ) |
131 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 1 ∈ ℂ ) |
132 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
133 |
132
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 1 ≠ 0 ) |
134 |
3
|
negcld |
⊢ ( 𝜑 → - 𝑋 ∈ ℂ ) |
135 |
134
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → - 𝑋 ∈ ℂ ) |
136 |
55
|
negcld |
⊢ ( 𝜑 → - 𝑀 ∈ ℂ ) |
137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → - 𝑀 ∈ ℂ ) |
138 |
|
sqneg |
⊢ ( 𝑋 ∈ ℂ → ( - 𝑋 ↑ 2 ) = ( 𝑋 ↑ 2 ) ) |
139 |
112 138
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( - 𝑋 ↑ 2 ) = ( 𝑋 ↑ 2 ) ) |
140 |
137
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 1 · - 𝑀 ) = - 𝑀 ) |
141 |
140
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 4 · ( 1 · - 𝑀 ) ) = ( 4 · - 𝑀 ) ) |
142 |
|
mulneg2 |
⊢ ( ( 4 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 4 · - 𝑀 ) = - ( 4 · 𝑀 ) ) |
143 |
57 108 142
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 4 · - 𝑀 ) = - ( 4 · 𝑀 ) ) |
144 |
141 143
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 4 · ( 1 · - 𝑀 ) ) = - ( 4 · 𝑀 ) ) |
145 |
139 144
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( - 𝑋 ↑ 2 ) − ( 4 · ( 1 · - 𝑀 ) ) ) = ( ( 𝑋 ↑ 2 ) − - ( 4 · 𝑀 ) ) ) |
146 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
147 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 4 · 𝑀 ) ∈ ℂ ) |
148 |
146 147
|
subnegd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑋 ↑ 2 ) − - ( 4 · 𝑀 ) ) = ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) |
149 |
145 148
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) = ( ( - 𝑋 ↑ 2 ) − ( 4 · ( 1 · - 𝑀 ) ) ) ) |
150 |
131 133 135 137 107 149
|
quad |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 1 · ( 𝑢 ↑ 2 ) ) + ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) ) = 0 ↔ ( 𝑢 = ( ( - - 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ∨ 𝑢 = ( ( - - 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ) ) ) |
151 |
117
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 1 · ( 𝑢 ↑ 2 ) ) = ( 𝑢 ↑ 2 ) ) |
152 |
112 107
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( - 𝑋 · 𝑢 ) = - ( 𝑋 · 𝑢 ) ) |
153 |
152
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) = ( - ( 𝑋 · 𝑢 ) + - 𝑀 ) ) |
154 |
118 108
|
negdid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → - ( ( 𝑋 · 𝑢 ) + 𝑀 ) = ( - ( 𝑋 · 𝑢 ) + - 𝑀 ) ) |
155 |
153 154
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) = - ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) |
156 |
151 155
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 1 · ( 𝑢 ↑ 2 ) ) + ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) ) = ( ( 𝑢 ↑ 2 ) + - ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) ) |
157 |
117 119
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 ↑ 2 ) + - ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) = ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) ) |
158 |
156 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 1 · ( 𝑢 ↑ 2 ) ) + ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) ) = ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) ) |
159 |
158
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 1 · ( 𝑢 ↑ 2 ) ) + ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) ) = 0 ↔ ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) = 0 ) ) |
160 |
112
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → - - 𝑋 = 𝑋 ) |
161 |
160
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( - - 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) = ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ) |
162 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
163 |
162
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 2 · 1 ) = 2 ) |
164 |
161 163
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( - - 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) |
165 |
164
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 = ( ( - - 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ↔ 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) |
166 |
160
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( - - 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) = ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ) |
167 |
166 163
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( - - 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) |
168 |
167
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 = ( ( - - 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ↔ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) |
169 |
165 168
|
orbi12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 = ( ( - - 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ∨ 𝑢 = ( ( - - 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ) ↔ ( 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) ) |
170 |
150 159 169
|
3bitr3d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) = 0 ↔ ( 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) ) |
171 |
116 130 170
|
3bitr2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ ( 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) ) |
172 |
171
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) ( 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) ) |
173 |
|
r19.43 |
⊢ ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) ( 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ↔ ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) |
174 |
172 173
|
bitrdi |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) ) |
175 |
|
risset |
⊢ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) |
176 |
3 96
|
addcld |
⊢ ( 𝜑 → ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ∈ ℂ ) |
177 |
176
|
halfcld |
⊢ ( 𝜑 → ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ ) |
178 |
|
eldifsn |
⊢ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ ∧ ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
179 |
178
|
baib |
⊢ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
180 |
177 179
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
181 |
175 180
|
bitr3id |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ↔ ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
182 |
|
risset |
⊢ ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) |
183 |
3 96
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ∈ ℂ ) |
184 |
183
|
halfcld |
⊢ ( 𝜑 → ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ ) |
185 |
|
eldifsn |
⊢ ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
186 |
185
|
baib |
⊢ ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ → ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
187 |
184 186
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
188 |
182 187
|
bitr3id |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ↔ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
189 |
181 188
|
orbi12d |
⊢ ( 𝜑 → ( ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ↔ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ∨ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) ) |
190 |
|
neorian |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ∨ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ↔ ¬ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) ) |
191 |
189 190
|
bitrdi |
⊢ ( 𝜑 → ( ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ↔ ¬ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) ) ) |
192 |
174 191
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ ¬ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) ) ) |
193 |
105 192
|
sylibrd |
⊢ ( 𝜑 → ( ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) → ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) |
194 |
193
|
imp |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) |
195 |
90 194
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) |
196 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑃 ∈ ℂ ) |
197 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑄 ∈ ℂ ) |
198 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑋 ∈ ℂ ) |
199 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑇 ∈ ℂ ) |
200 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → ( 𝑇 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) |
201 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝐺 ∈ ℂ ) |
202 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) |
203 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑀 = ( 𝑃 / 3 ) ) |
204 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑁 = ( 𝑄 / 2 ) ) |
205 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑇 ≠ 0 ) |
206 |
106
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑢 ∈ ℂ ) |
207 |
109
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑢 ≠ 0 ) |
208 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) |
209 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) |
210 |
196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
dcubic2 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) |
211 |
195 210
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) |
212 |
211
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 → ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) ) |
213 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑃 ∈ ℂ ) |
214 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑄 ∈ ℂ ) |
215 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑋 ∈ ℂ ) |
216 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑟 ∈ ℂ ) |
217 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑇 ∈ ℂ ) |
218 |
216 217
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 𝑟 · 𝑇 ) ∈ ℂ ) |
219 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
220 |
219
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 3 ∈ ℕ0 ) |
221 |
216 217 220
|
mulexpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( ( 𝑟 · 𝑇 ) ↑ 3 ) = ( ( 𝑟 ↑ 3 ) · ( 𝑇 ↑ 3 ) ) ) |
222 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 𝑟 ↑ 3 ) = 1 ) |
223 |
222
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( ( 𝑟 ↑ 3 ) · ( 𝑇 ↑ 3 ) ) = ( 1 · ( 𝑇 ↑ 3 ) ) ) |
224 |
|
expcl |
⊢ ( ( 𝑇 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑇 ↑ 3 ) ∈ ℂ ) |
225 |
4 219 224
|
sylancl |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) ∈ ℂ ) |
226 |
225
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( 𝑇 ↑ 3 ) ) = ( 𝑇 ↑ 3 ) ) |
227 |
226 5
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( 𝑇 ↑ 3 ) ) = ( 𝐺 − 𝑁 ) ) |
228 |
227
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 1 · ( 𝑇 ↑ 3 ) ) = ( 𝐺 − 𝑁 ) ) |
229 |
221 223 228
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( ( 𝑟 · 𝑇 ) ↑ 3 ) = ( 𝐺 − 𝑁 ) ) |
230 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝐺 ∈ ℂ ) |
231 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) |
232 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑀 = ( 𝑃 / 3 ) ) |
233 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑁 = ( 𝑄 / 2 ) ) |
234 |
132
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 1 ≠ 0 ) |
235 |
222 234
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 𝑟 ↑ 3 ) ≠ 0 ) |
236 |
|
oveq1 |
⊢ ( 𝑟 = 0 → ( 𝑟 ↑ 3 ) = ( 0 ↑ 3 ) ) |
237 |
236 31
|
eqtrdi |
⊢ ( 𝑟 = 0 → ( 𝑟 ↑ 3 ) = 0 ) |
238 |
237
|
necon3i |
⊢ ( ( 𝑟 ↑ 3 ) ≠ 0 → 𝑟 ≠ 0 ) |
239 |
235 238
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑟 ≠ 0 ) |
240 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑇 ≠ 0 ) |
241 |
216 217 239 240
|
mulne0d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 𝑟 · 𝑇 ) ≠ 0 ) |
242 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) |
243 |
213 214 215 218 229 230 231 232 233 241 242
|
dcubic1 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) |
244 |
243
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ) |
245 |
212 244
|
impbid |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ↔ ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) ) |