Metamath Proof Explorer
		
		
		
		Description:  Cancellation in a double division.  (Contributed by Mario Carneiro, 27-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | div1d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
					
						|  |  | divcld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
					
						|  |  | divne0d.3 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
					
						|  |  | divne0d.4 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
				
					|  | Assertion | ddcand | ⊢  ( 𝜑  →  ( 𝐴  /  ( 𝐴  /  𝐵 ) )  =  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | div1d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | divcld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | divne0d.3 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 4 |  | divne0d.4 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 5 |  | ddcan | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( 𝐴  /  ( 𝐴  /  𝐵 ) )  =  𝐵 ) | 
						
							| 6 | 1 3 2 4 5 | syl22anc | ⊢ ( 𝜑  →  ( 𝐴  /  ( 𝐴  /  𝐵 ) )  =  𝐵 ) |