Description: Double complement under universal class. Exercise 4.10(s) of Mendelson p. 231. (Contributed by NM, 8-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ddif | ⊢ ( V ∖ ( V ∖ 𝐴 ) ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | eldif | ⊢ ( 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 3 | 1 2 | mpbiran | ⊢ ( 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ¬ 𝑥 ∈ 𝐴 ) |
| 4 | 3 | con2bii | ⊢ ( 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ ( V ∖ 𝐴 ) ) |
| 5 | 1 | biantrur | ⊢ ( ¬ 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ ( V ∖ 𝐴 ) ) ) |
| 6 | 4 5 | bitr2i | ⊢ ( ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ ( V ∖ 𝐴 ) ) ↔ 𝑥 ∈ 𝐴 ) |
| 7 | 6 | difeqri | ⊢ ( V ∖ ( V ∖ 𝐴 ) ) = 𝐴 |