Metamath Proof Explorer


Theorem ddif

Description: Double complement under universal class. Exercise 4.10(s) of Mendelson p. 231. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion ddif ( V ∖ ( V ∖ 𝐴 ) ) = 𝐴

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 eldif ( 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥𝐴 ) )
3 1 2 mpbiran ( 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ¬ 𝑥𝐴 )
4 3 con2bii ( 𝑥𝐴 ↔ ¬ 𝑥 ∈ ( V ∖ 𝐴 ) )
5 1 biantrur ( ¬ 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ ( V ∖ 𝐴 ) ) )
6 4 5 bitr2i ( ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ ( V ∖ 𝐴 ) ) ↔ 𝑥𝐴 )
7 6 difeqri ( V ∖ ( V ∖ 𝐴 ) ) = 𝐴