Description: Double complement under universal class. Exercise 4.10(s) of Mendelson p. 231. (Contributed by NM, 8-Jan-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | ddif | ⊢ ( V ∖ ( V ∖ 𝐴 ) ) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | ⊢ 𝑥 ∈ V | |
2 | eldif | ⊢ ( 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
3 | 1 2 | mpbiran | ⊢ ( 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ¬ 𝑥 ∈ 𝐴 ) |
4 | 3 | con2bii | ⊢ ( 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ ( V ∖ 𝐴 ) ) |
5 | 1 | biantrur | ⊢ ( ¬ 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ ( V ∖ 𝐴 ) ) ) |
6 | 4 5 | bitr2i | ⊢ ( ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ ( V ∖ 𝐴 ) ) ↔ 𝑥 ∈ 𝐴 ) |
7 | 6 | difeqri | ⊢ ( V ∖ ( V ∖ 𝐴 ) ) = 𝐴 |