Metamath Proof Explorer


Theorem dec0h

Description: Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Hypothesis dec0u.1 𝐴 ∈ ℕ0
Assertion dec0h 𝐴 = 0 𝐴

Proof

Step Hyp Ref Expression
1 dec0u.1 𝐴 ∈ ℕ0
2 10nn0 1 0 ∈ ℕ0
3 2 1 num0h 𝐴 = ( ( 1 0 · 0 ) + 𝐴 )
4 dfdec10 0 𝐴 = ( ( 1 0 · 0 ) + 𝐴 )
5 3 4 eqtr4i 𝐴 = 0 𝐴