Description: Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015) (Revised by AV, 6-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dec0u.1 | ⊢ 𝐴 ∈ ℕ0 | |
| Assertion | dec0u | ⊢ ( ; 1 0 · 𝐴 ) = ; 𝐴 0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dec0u.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 3 | 2 1 | num0u | ⊢ ( ; 1 0 · 𝐴 ) = ( ( ; 1 0 · 𝐴 ) + 0 ) | 
| 4 | dfdec10 | ⊢ ; 𝐴 0 = ( ( ; 1 0 · 𝐴 ) + 0 ) | |
| 5 | 3 4 | eqtr4i | ⊢ ( ; 1 0 · 𝐴 ) = ; 𝐴 0 |