Step |
Hyp |
Ref |
Expression |
1 |
|
dec2dvds.1 |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dec2dvds.2 |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
dec2dvds.3 |
⊢ ( 𝐵 · 2 ) = 𝐶 |
4 |
|
dec2dvds.4 |
⊢ 𝐷 = ( 𝐶 + 1 ) |
5 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
6 |
5
|
nn0zi |
⊢ 5 ∈ ℤ |
7 |
|
2z |
⊢ 2 ∈ ℤ |
8 |
|
dvdsmul2 |
⊢ ( ( 5 ∈ ℤ ∧ 2 ∈ ℤ ) → 2 ∥ ( 5 · 2 ) ) |
9 |
6 7 8
|
mp2an |
⊢ 2 ∥ ( 5 · 2 ) |
10 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
11 |
9 10
|
breqtri |
⊢ 2 ∥ ; 1 0 |
12 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
13 |
12
|
nn0zi |
⊢ ; 1 0 ∈ ℤ |
14 |
1
|
nn0zi |
⊢ 𝐴 ∈ ℤ |
15 |
|
dvdsmultr1 |
⊢ ( ( 2 ∈ ℤ ∧ ; 1 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 2 ∥ ; 1 0 → 2 ∥ ( ; 1 0 · 𝐴 ) ) ) |
16 |
7 13 14 15
|
mp3an |
⊢ ( 2 ∥ ; 1 0 → 2 ∥ ( ; 1 0 · 𝐴 ) ) |
17 |
11 16
|
ax-mp |
⊢ 2 ∥ ( ; 1 0 · 𝐴 ) |
18 |
2
|
nn0zi |
⊢ 𝐵 ∈ ℤ |
19 |
|
dvdsmul2 |
⊢ ( ( 𝐵 ∈ ℤ ∧ 2 ∈ ℤ ) → 2 ∥ ( 𝐵 · 2 ) ) |
20 |
18 7 19
|
mp2an |
⊢ 2 ∥ ( 𝐵 · 2 ) |
21 |
20 3
|
breqtri |
⊢ 2 ∥ 𝐶 |
22 |
12 1
|
nn0mulcli |
⊢ ( ; 1 0 · 𝐴 ) ∈ ℕ0 |
23 |
22
|
nn0zi |
⊢ ( ; 1 0 · 𝐴 ) ∈ ℤ |
24 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
25 |
2 24
|
nn0mulcli |
⊢ ( 𝐵 · 2 ) ∈ ℕ0 |
26 |
3 25
|
eqeltrri |
⊢ 𝐶 ∈ ℕ0 |
27 |
26
|
nn0zi |
⊢ 𝐶 ∈ ℤ |
28 |
|
dvds2add |
⊢ ( ( 2 ∈ ℤ ∧ ( ; 1 0 · 𝐴 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 2 ∥ ( ; 1 0 · 𝐴 ) ∧ 2 ∥ 𝐶 ) → 2 ∥ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) ) ) |
29 |
7 23 27 28
|
mp3an |
⊢ ( ( 2 ∥ ( ; 1 0 · 𝐴 ) ∧ 2 ∥ 𝐶 ) → 2 ∥ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) ) |
30 |
17 21 29
|
mp2an |
⊢ 2 ∥ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
31 |
|
dfdec10 |
⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
32 |
30 31
|
breqtrri |
⊢ 2 ∥ ; 𝐴 𝐶 |
33 |
1 26
|
deccl |
⊢ ; 𝐴 𝐶 ∈ ℕ0 |
34 |
33
|
nn0zi |
⊢ ; 𝐴 𝐶 ∈ ℤ |
35 |
|
2nn |
⊢ 2 ∈ ℕ |
36 |
|
1lt2 |
⊢ 1 < 2 |
37 |
|
ndvdsp1 |
⊢ ( ( ; 𝐴 𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2 ) → ( 2 ∥ ; 𝐴 𝐶 → ¬ 2 ∥ ( ; 𝐴 𝐶 + 1 ) ) ) |
38 |
34 35 36 37
|
mp3an |
⊢ ( 2 ∥ ; 𝐴 𝐶 → ¬ 2 ∥ ( ; 𝐴 𝐶 + 1 ) ) |
39 |
32 38
|
ax-mp |
⊢ ¬ 2 ∥ ( ; 𝐴 𝐶 + 1 ) |
40 |
4
|
eqcomi |
⊢ ( 𝐶 + 1 ) = 𝐷 |
41 |
|
eqid |
⊢ ; 𝐴 𝐶 = ; 𝐴 𝐶 |
42 |
1 26 40 41
|
decsuc |
⊢ ( ; 𝐴 𝐶 + 1 ) = ; 𝐴 𝐷 |
43 |
42
|
breq2i |
⊢ ( 2 ∥ ( ; 𝐴 𝐶 + 1 ) ↔ 2 ∥ ; 𝐴 𝐷 ) |
44 |
39 43
|
mtbi |
⊢ ¬ 2 ∥ ; 𝐴 𝐷 |