| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dec2dvds.1 | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | dec2dvds.2 | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 3 |  | dec2dvds.3 | ⊢ ( 𝐵  ·  2 )  =  𝐶 | 
						
							| 4 |  | dec2dvds.4 | ⊢ 𝐷  =  ( 𝐶  +  1 ) | 
						
							| 5 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 6 | 5 | nn0zi | ⊢ 5  ∈  ℤ | 
						
							| 7 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 8 |  | dvdsmul2 | ⊢ ( ( 5  ∈  ℤ  ∧  2  ∈  ℤ )  →  2  ∥  ( 5  ·  2 ) ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ 2  ∥  ( 5  ·  2 ) | 
						
							| 10 |  | 5t2e10 | ⊢ ( 5  ·  2 )  =  ; 1 0 | 
						
							| 11 | 9 10 | breqtri | ⊢ 2  ∥  ; 1 0 | 
						
							| 12 |  | 10nn0 | ⊢ ; 1 0  ∈  ℕ0 | 
						
							| 13 | 12 | nn0zi | ⊢ ; 1 0  ∈  ℤ | 
						
							| 14 | 1 | nn0zi | ⊢ 𝐴  ∈  ℤ | 
						
							| 15 |  | dvdsmultr1 | ⊢ ( ( 2  ∈  ℤ  ∧  ; 1 0  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 2  ∥  ; 1 0  →  2  ∥  ( ; 1 0  ·  𝐴 ) ) ) | 
						
							| 16 | 7 13 14 15 | mp3an | ⊢ ( 2  ∥  ; 1 0  →  2  ∥  ( ; 1 0  ·  𝐴 ) ) | 
						
							| 17 | 11 16 | ax-mp | ⊢ 2  ∥  ( ; 1 0  ·  𝐴 ) | 
						
							| 18 | 2 | nn0zi | ⊢ 𝐵  ∈  ℤ | 
						
							| 19 |  | dvdsmul2 | ⊢ ( ( 𝐵  ∈  ℤ  ∧  2  ∈  ℤ )  →  2  ∥  ( 𝐵  ·  2 ) ) | 
						
							| 20 | 18 7 19 | mp2an | ⊢ 2  ∥  ( 𝐵  ·  2 ) | 
						
							| 21 | 20 3 | breqtri | ⊢ 2  ∥  𝐶 | 
						
							| 22 | 12 1 | nn0mulcli | ⊢ ( ; 1 0  ·  𝐴 )  ∈  ℕ0 | 
						
							| 23 | 22 | nn0zi | ⊢ ( ; 1 0  ·  𝐴 )  ∈  ℤ | 
						
							| 24 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 25 | 2 24 | nn0mulcli | ⊢ ( 𝐵  ·  2 )  ∈  ℕ0 | 
						
							| 26 | 3 25 | eqeltrri | ⊢ 𝐶  ∈  ℕ0 | 
						
							| 27 | 26 | nn0zi | ⊢ 𝐶  ∈  ℤ | 
						
							| 28 |  | dvds2add | ⊢ ( ( 2  ∈  ℤ  ∧  ( ; 1 0  ·  𝐴 )  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  ( ( 2  ∥  ( ; 1 0  ·  𝐴 )  ∧  2  ∥  𝐶 )  →  2  ∥  ( ( ; 1 0  ·  𝐴 )  +  𝐶 ) ) ) | 
						
							| 29 | 7 23 27 28 | mp3an | ⊢ ( ( 2  ∥  ( ; 1 0  ·  𝐴 )  ∧  2  ∥  𝐶 )  →  2  ∥  ( ( ; 1 0  ·  𝐴 )  +  𝐶 ) ) | 
						
							| 30 | 17 21 29 | mp2an | ⊢ 2  ∥  ( ( ; 1 0  ·  𝐴 )  +  𝐶 ) | 
						
							| 31 |  | dfdec10 | ⊢ ; 𝐴 𝐶  =  ( ( ; 1 0  ·  𝐴 )  +  𝐶 ) | 
						
							| 32 | 30 31 | breqtrri | ⊢ 2  ∥  ; 𝐴 𝐶 | 
						
							| 33 | 1 26 | deccl | ⊢ ; 𝐴 𝐶  ∈  ℕ0 | 
						
							| 34 | 33 | nn0zi | ⊢ ; 𝐴 𝐶  ∈  ℤ | 
						
							| 35 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 36 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 37 |  | ndvdsp1 | ⊢ ( ( ; 𝐴 𝐶  ∈  ℤ  ∧  2  ∈  ℕ  ∧  1  <  2 )  →  ( 2  ∥  ; 𝐴 𝐶  →  ¬  2  ∥  ( ; 𝐴 𝐶  +  1 ) ) ) | 
						
							| 38 | 34 35 36 37 | mp3an | ⊢ ( 2  ∥  ; 𝐴 𝐶  →  ¬  2  ∥  ( ; 𝐴 𝐶  +  1 ) ) | 
						
							| 39 | 32 38 | ax-mp | ⊢ ¬  2  ∥  ( ; 𝐴 𝐶  +  1 ) | 
						
							| 40 | 4 | eqcomi | ⊢ ( 𝐶  +  1 )  =  𝐷 | 
						
							| 41 |  | eqid | ⊢ ; 𝐴 𝐶  =  ; 𝐴 𝐶 | 
						
							| 42 | 1 26 40 41 | decsuc | ⊢ ( ; 𝐴 𝐶  +  1 )  =  ; 𝐴 𝐷 | 
						
							| 43 | 42 | breq2i | ⊢ ( 2  ∥  ( ; 𝐴 𝐶  +  1 )  ↔  2  ∥  ; 𝐴 𝐷 ) | 
						
							| 44 | 39 43 | mtbi | ⊢ ¬  2  ∥  ; 𝐴 𝐷 |