Step |
Hyp |
Ref |
Expression |
1 |
|
dec5nprm.1 |
⊢ 𝐴 ∈ ℕ |
2 |
|
dec2nprm.2 |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
dec2nprm.3 |
⊢ ( 𝐵 · 2 ) = 𝐶 |
4 |
|
5nn |
⊢ 5 ∈ ℕ |
5 |
4 1
|
nnmulcli |
⊢ ( 5 · 𝐴 ) ∈ ℕ |
6 |
|
nnnn0addcl |
⊢ ( ( ( 5 · 𝐴 ) ∈ ℕ ∧ 𝐵 ∈ ℕ0 ) → ( ( 5 · 𝐴 ) + 𝐵 ) ∈ ℕ ) |
7 |
5 2 6
|
mp2an |
⊢ ( ( 5 · 𝐴 ) + 𝐵 ) ∈ ℕ |
8 |
|
2nn |
⊢ 2 ∈ ℕ |
9 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
10 |
|
1lt5 |
⊢ 1 < 5 |
11 |
4 1 2 9 10
|
numlti |
⊢ 1 < ( ( 5 · 𝐴 ) + 𝐵 ) |
12 |
|
1lt2 |
⊢ 1 < 2 |
13 |
4
|
nncni |
⊢ 5 ∈ ℂ |
14 |
1
|
nncni |
⊢ 𝐴 ∈ ℂ |
15 |
|
2cn |
⊢ 2 ∈ ℂ |
16 |
13 14 15
|
mul32i |
⊢ ( ( 5 · 𝐴 ) · 2 ) = ( ( 5 · 2 ) · 𝐴 ) |
17 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
18 |
17
|
oveq1i |
⊢ ( ( 5 · 2 ) · 𝐴 ) = ( ; 1 0 · 𝐴 ) |
19 |
16 18
|
eqtri |
⊢ ( ( 5 · 𝐴 ) · 2 ) = ( ; 1 0 · 𝐴 ) |
20 |
19 3
|
oveq12i |
⊢ ( ( ( 5 · 𝐴 ) · 2 ) + ( 𝐵 · 2 ) ) = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
21 |
5
|
nncni |
⊢ ( 5 · 𝐴 ) ∈ ℂ |
22 |
2
|
nn0cni |
⊢ 𝐵 ∈ ℂ |
23 |
21 22 15
|
adddiri |
⊢ ( ( ( 5 · 𝐴 ) + 𝐵 ) · 2 ) = ( ( ( 5 · 𝐴 ) · 2 ) + ( 𝐵 · 2 ) ) |
24 |
|
dfdec10 |
⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
25 |
20 23 24
|
3eqtr4i |
⊢ ( ( ( 5 · 𝐴 ) + 𝐵 ) · 2 ) = ; 𝐴 𝐶 |
26 |
7 8 11 12 25
|
nprmi |
⊢ ¬ ; 𝐴 𝐶 ∈ ℙ |