Step |
Hyp |
Ref |
Expression |
1 |
|
dec5dvds.1 |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dec5dvds.2 |
⊢ 𝐵 ∈ ℕ |
3 |
|
dec5dvds.3 |
⊢ 𝐵 < 5 |
4 |
|
5nn |
⊢ 5 ∈ ℕ |
5 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
6 |
5 1
|
nn0mulcli |
⊢ ( 2 · 𝐴 ) ∈ ℕ0 |
7 |
|
5cn |
⊢ 5 ∈ ℂ |
8 |
|
2cn |
⊢ 2 ∈ ℂ |
9 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
10 |
7 8 9
|
mulassi |
⊢ ( ( 5 · 2 ) · 𝐴 ) = ( 5 · ( 2 · 𝐴 ) ) |
11 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
12 |
11
|
oveq1i |
⊢ ( ( 5 · 2 ) · 𝐴 ) = ( ; 1 0 · 𝐴 ) |
13 |
10 12
|
eqtr3i |
⊢ ( 5 · ( 2 · 𝐴 ) ) = ( ; 1 0 · 𝐴 ) |
14 |
13
|
oveq1i |
⊢ ( ( 5 · ( 2 · 𝐴 ) ) + 𝐵 ) = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
15 |
|
dfdec10 |
⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
16 |
14 15
|
eqtr4i |
⊢ ( ( 5 · ( 2 · 𝐴 ) ) + 𝐵 ) = ; 𝐴 𝐵 |
17 |
4 6 2 16 3
|
ndvdsi |
⊢ ¬ 5 ∥ ; 𝐴 𝐵 |