Step |
Hyp |
Ref |
Expression |
1 |
|
dec5dvds.1 |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dec5dvds.2 |
⊢ 𝐵 ∈ ℕ |
3 |
|
dec5dvds.3 |
⊢ 𝐵 < 5 |
4 |
|
dec5dvds2.4 |
⊢ ( 5 + 𝐵 ) = 𝐶 |
5 |
1 2 3
|
dec5dvds |
⊢ ¬ 5 ∥ ; 𝐴 𝐵 |
6 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
7 |
6
|
nn0zi |
⊢ 5 ∈ ℤ |
8 |
2
|
nnnn0i |
⊢ 𝐵 ∈ ℕ0 |
9 |
1 8
|
deccl |
⊢ ; 𝐴 𝐵 ∈ ℕ0 |
10 |
9
|
nn0zi |
⊢ ; 𝐴 𝐵 ∈ ℤ |
11 |
|
dvdsadd |
⊢ ( ( 5 ∈ ℤ ∧ ; 𝐴 𝐵 ∈ ℤ ) → ( 5 ∥ ; 𝐴 𝐵 ↔ 5 ∥ ( 5 + ; 𝐴 𝐵 ) ) ) |
12 |
7 10 11
|
mp2an |
⊢ ( 5 ∥ ; 𝐴 𝐵 ↔ 5 ∥ ( 5 + ; 𝐴 𝐵 ) ) |
13 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
14 |
6
|
dec0h |
⊢ 5 = ; 0 5 |
15 |
|
eqid |
⊢ ; 𝐴 𝐵 = ; 𝐴 𝐵 |
16 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
17 |
16
|
addid2i |
⊢ ( 0 + 𝐴 ) = 𝐴 |
18 |
13 6 1 8 14 15 17 4
|
decadd |
⊢ ( 5 + ; 𝐴 𝐵 ) = ; 𝐴 𝐶 |
19 |
18
|
breq2i |
⊢ ( 5 ∥ ( 5 + ; 𝐴 𝐵 ) ↔ 5 ∥ ; 𝐴 𝐶 ) |
20 |
12 19
|
bitri |
⊢ ( 5 ∥ ; 𝐴 𝐵 ↔ 5 ∥ ; 𝐴 𝐶 ) |
21 |
5 20
|
mtbi |
⊢ ¬ 5 ∥ ; 𝐴 𝐶 |