Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dec5nprm.1 | ⊢ 𝐴 ∈ ℕ | |
Assertion | dec5nprm | ⊢ ¬ ; 𝐴 5 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dec5nprm.1 | ⊢ 𝐴 ∈ ℕ | |
2 | 2nn | ⊢ 2 ∈ ℕ | |
3 | 2 1 | nnmulcli | ⊢ ( 2 · 𝐴 ) ∈ ℕ |
4 | peano2nn | ⊢ ( ( 2 · 𝐴 ) ∈ ℕ → ( ( 2 · 𝐴 ) + 1 ) ∈ ℕ ) | |
5 | 3 4 | ax-mp | ⊢ ( ( 2 · 𝐴 ) + 1 ) ∈ ℕ |
6 | 5nn | ⊢ 5 ∈ ℕ | |
7 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
8 | 1lt2 | ⊢ 1 < 2 | |
9 | 2 1 7 7 8 | numlti | ⊢ 1 < ( ( 2 · 𝐴 ) + 1 ) |
10 | 1lt5 | ⊢ 1 < 5 | |
11 | 2 | nncni | ⊢ 2 ∈ ℂ |
12 | 1 | nncni | ⊢ 𝐴 ∈ ℂ |
13 | 5cn | ⊢ 5 ∈ ℂ | |
14 | 11 12 13 | mul32i | ⊢ ( ( 2 · 𝐴 ) · 5 ) = ( ( 2 · 5 ) · 𝐴 ) |
15 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
16 | 13 11 15 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
17 | 16 | oveq1i | ⊢ ( ( 2 · 5 ) · 𝐴 ) = ( ; 1 0 · 𝐴 ) |
18 | 14 17 | eqtri | ⊢ ( ( 2 · 𝐴 ) · 5 ) = ( ; 1 0 · 𝐴 ) |
19 | 13 | mulid2i | ⊢ ( 1 · 5 ) = 5 |
20 | 18 19 | oveq12i | ⊢ ( ( ( 2 · 𝐴 ) · 5 ) + ( 1 · 5 ) ) = ( ( ; 1 0 · 𝐴 ) + 5 ) |
21 | 3 | nncni | ⊢ ( 2 · 𝐴 ) ∈ ℂ |
22 | ax-1cn | ⊢ 1 ∈ ℂ | |
23 | 21 22 13 | adddiri | ⊢ ( ( ( 2 · 𝐴 ) + 1 ) · 5 ) = ( ( ( 2 · 𝐴 ) · 5 ) + ( 1 · 5 ) ) |
24 | dfdec10 | ⊢ ; 𝐴 5 = ( ( ; 1 0 · 𝐴 ) + 5 ) | |
25 | 20 23 24 | 3eqtr4i | ⊢ ( ( ( 2 · 𝐴 ) + 1 ) · 5 ) = ; 𝐴 5 |
26 | 5 6 9 10 25 | nprmi | ⊢ ¬ ; 𝐴 5 ∈ ℙ |