Metamath Proof Explorer


Theorem dec5nprm

Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Hypothesis dec5nprm.1 𝐴 ∈ ℕ
Assertion dec5nprm ¬ 𝐴 5 ∈ ℙ

Proof

Step Hyp Ref Expression
1 dec5nprm.1 𝐴 ∈ ℕ
2 2nn 2 ∈ ℕ
3 2 1 nnmulcli ( 2 · 𝐴 ) ∈ ℕ
4 peano2nn ( ( 2 · 𝐴 ) ∈ ℕ → ( ( 2 · 𝐴 ) + 1 ) ∈ ℕ )
5 3 4 ax-mp ( ( 2 · 𝐴 ) + 1 ) ∈ ℕ
6 5nn 5 ∈ ℕ
7 1nn0 1 ∈ ℕ0
8 1lt2 1 < 2
9 2 1 7 7 8 numlti 1 < ( ( 2 · 𝐴 ) + 1 )
10 1lt5 1 < 5
11 2 nncni 2 ∈ ℂ
12 1 nncni 𝐴 ∈ ℂ
13 5cn 5 ∈ ℂ
14 11 12 13 mul32i ( ( 2 · 𝐴 ) · 5 ) = ( ( 2 · 5 ) · 𝐴 )
15 5t2e10 ( 5 · 2 ) = 1 0
16 13 11 15 mulcomli ( 2 · 5 ) = 1 0
17 16 oveq1i ( ( 2 · 5 ) · 𝐴 ) = ( 1 0 · 𝐴 )
18 14 17 eqtri ( ( 2 · 𝐴 ) · 5 ) = ( 1 0 · 𝐴 )
19 13 mulid2i ( 1 · 5 ) = 5
20 18 19 oveq12i ( ( ( 2 · 𝐴 ) · 5 ) + ( 1 · 5 ) ) = ( ( 1 0 · 𝐴 ) + 5 )
21 3 nncni ( 2 · 𝐴 ) ∈ ℂ
22 ax-1cn 1 ∈ ℂ
23 21 22 13 adddiri ( ( ( 2 · 𝐴 ) + 1 ) · 5 ) = ( ( ( 2 · 𝐴 ) · 5 ) + ( 1 · 5 ) )
24 dfdec10 𝐴 5 = ( ( 1 0 · 𝐴 ) + 5 )
25 20 23 24 3eqtr4i ( ( ( 2 · 𝐴 ) + 1 ) · 5 ) = 𝐴 5
26 5 6 9 10 25 nprmi ¬ 𝐴 5 ∈ ℙ