| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decma.a |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
decma.b |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
decma.c |
⊢ 𝐶 ∈ ℕ0 |
| 4 |
|
decma.d |
⊢ 𝐷 ∈ ℕ0 |
| 5 |
|
decma.m |
⊢ 𝑀 = ; 𝐴 𝐵 |
| 6 |
|
decma.n |
⊢ 𝑁 = ; 𝐶 𝐷 |
| 7 |
|
decadd.e |
⊢ ( 𝐴 + 𝐶 ) = 𝐸 |
| 8 |
|
decadd.f |
⊢ ( 𝐵 + 𝐷 ) = 𝐹 |
| 9 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
| 10 |
|
dfdec10 |
⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 11 |
5 10
|
eqtri |
⊢ 𝑀 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 12 |
|
dfdec10 |
⊢ ; 𝐶 𝐷 = ( ( ; 1 0 · 𝐶 ) + 𝐷 ) |
| 13 |
6 12
|
eqtri |
⊢ 𝑁 = ( ( ; 1 0 · 𝐶 ) + 𝐷 ) |
| 14 |
9 1 2 3 4 11 13 7 8
|
numadd |
⊢ ( 𝑀 + 𝑁 ) = ( ( ; 1 0 · 𝐸 ) + 𝐹 ) |
| 15 |
|
dfdec10 |
⊢ ; 𝐸 𝐹 = ( ( ; 1 0 · 𝐸 ) + 𝐹 ) |
| 16 |
14 15
|
eqtr4i |
⊢ ( 𝑀 + 𝑁 ) = ; 𝐸 𝐹 |