Metamath Proof Explorer
Description: Add two numerals M and N (no carry). (Contributed by Mario
Carneiro, 18-Feb-2014)
|
|
Ref |
Expression |
|
Hypotheses |
decaddi.1 |
⊢ 𝐴 ∈ ℕ0 |
|
|
decaddi.2 |
⊢ 𝐵 ∈ ℕ0 |
|
|
decaddi.3 |
⊢ 𝑁 ∈ ℕ0 |
|
|
decaddi.4 |
⊢ 𝑀 = ; 𝐴 𝐵 |
|
|
decaddi.5 |
⊢ ( 𝐵 + 𝑁 ) = 𝐶 |
|
Assertion |
decaddi |
⊢ ( 𝑀 + 𝑁 ) = ; 𝐴 𝐶 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decaddi.1 |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
decaddi.2 |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
decaddi.3 |
⊢ 𝑁 ∈ ℕ0 |
| 4 |
|
decaddi.4 |
⊢ 𝑀 = ; 𝐴 𝐵 |
| 5 |
|
decaddi.5 |
⊢ ( 𝐵 + 𝑁 ) = 𝐶 |
| 6 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 7 |
3
|
dec0h |
⊢ 𝑁 = ; 0 𝑁 |
| 8 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
| 9 |
8
|
addridi |
⊢ ( 𝐴 + 0 ) = 𝐴 |
| 10 |
1 2 6 3 4 7 9 5
|
decadd |
⊢ ( 𝑀 + 𝑁 ) = ; 𝐴 𝐶 |