Metamath Proof Explorer
		
		
		
		Description:  The sum of two multiples of 10 is a multiple of 10.  (Contributed by AV, 30-Jul-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | decaddm10.a | ⊢ 𝐴  ∈  ℕ0 | 
					
						|  |  | decaddm10.b | ⊢ 𝐵  ∈  ℕ0 | 
				
					|  | Assertion | decaddm10 | ⊢  ( ; 𝐴 0  +  ; 𝐵 0 )  =  ; ( 𝐴  +  𝐵 ) 0 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decaddm10.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | decaddm10.b | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 3 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 4 |  | eqid | ⊢ ; 𝐴 0  =  ; 𝐴 0 | 
						
							| 5 |  | eqid | ⊢ ; 𝐵 0  =  ; 𝐵 0 | 
						
							| 6 |  | eqid | ⊢ ( 𝐴  +  𝐵 )  =  ( 𝐴  +  𝐵 ) | 
						
							| 7 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 8 | 1 3 2 3 4 5 6 7 | decadd | ⊢ ( ; 𝐴 0  +  ; 𝐵 0 )  =  ; ( 𝐴  +  𝐵 ) 0 |