Metamath Proof Explorer


Theorem decbin0

Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis decbin.1 𝐴 ∈ ℕ0
Assertion decbin0 ( 4 · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 decbin.1 𝐴 ∈ ℕ0
2 2t2e4 ( 2 · 2 ) = 4
3 2 oveq1i ( ( 2 · 2 ) · 𝐴 ) = ( 4 · 𝐴 )
4 2cn 2 ∈ ℂ
5 1 nn0cni 𝐴 ∈ ℂ
6 4 4 5 mulassi ( ( 2 · 2 ) · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) )
7 3 6 eqtr3i ( 4 · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) )