Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | decbin.1 | ⊢ 𝐴 ∈ ℕ0 | |
Assertion | decbin0 | ⊢ ( 4 · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decbin.1 | ⊢ 𝐴 ∈ ℕ0 | |
2 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
3 | 2 | oveq1i | ⊢ ( ( 2 · 2 ) · 𝐴 ) = ( 4 · 𝐴 ) |
4 | 2cn | ⊢ 2 ∈ ℂ | |
5 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
6 | 4 4 5 | mulassi | ⊢ ( ( 2 · 2 ) · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) ) |
7 | 3 6 | eqtr3i | ⊢ ( 4 · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) ) |