Metamath Proof Explorer


Theorem decbin2

Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis decbin.1 𝐴 ∈ ℕ0
Assertion decbin2 ( ( 4 · 𝐴 ) + 2 ) = ( 2 · ( ( 2 · 𝐴 ) + 1 ) )

Proof

Step Hyp Ref Expression
1 decbin.1 𝐴 ∈ ℕ0
2 2t1e2 ( 2 · 1 ) = 2
3 2 oveq2i ( ( 2 · ( 2 · 𝐴 ) ) + ( 2 · 1 ) ) = ( ( 2 · ( 2 · 𝐴 ) ) + 2 )
4 2cn 2 ∈ ℂ
5 1 nn0cni 𝐴 ∈ ℂ
6 4 5 mulcli ( 2 · 𝐴 ) ∈ ℂ
7 ax-1cn 1 ∈ ℂ
8 4 6 7 adddii ( 2 · ( ( 2 · 𝐴 ) + 1 ) ) = ( ( 2 · ( 2 · 𝐴 ) ) + ( 2 · 1 ) )
9 1 decbin0 ( 4 · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) )
10 9 oveq1i ( ( 4 · 𝐴 ) + 2 ) = ( ( 2 · ( 2 · 𝐴 ) ) + 2 )
11 3 8 10 3eqtr4ri ( ( 4 · 𝐴 ) + 2 ) = ( 2 · ( ( 2 · 𝐴 ) + 1 ) )