Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | decbin.1 | ⊢ 𝐴 ∈ ℕ0 | |
Assertion | decbin2 | ⊢ ( ( 4 · 𝐴 ) + 2 ) = ( 2 · ( ( 2 · 𝐴 ) + 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decbin.1 | ⊢ 𝐴 ∈ ℕ0 | |
2 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
3 | 2 | oveq2i | ⊢ ( ( 2 · ( 2 · 𝐴 ) ) + ( 2 · 1 ) ) = ( ( 2 · ( 2 · 𝐴 ) ) + 2 ) |
4 | 2cn | ⊢ 2 ∈ ℂ | |
5 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
6 | 4 5 | mulcli | ⊢ ( 2 · 𝐴 ) ∈ ℂ |
7 | ax-1cn | ⊢ 1 ∈ ℂ | |
8 | 4 6 7 | adddii | ⊢ ( 2 · ( ( 2 · 𝐴 ) + 1 ) ) = ( ( 2 · ( 2 · 𝐴 ) ) + ( 2 · 1 ) ) |
9 | 1 | decbin0 | ⊢ ( 4 · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) ) |
10 | 9 | oveq1i | ⊢ ( ( 4 · 𝐴 ) + 2 ) = ( ( 2 · ( 2 · 𝐴 ) ) + 2 ) |
11 | 3 8 10 | 3eqtr4ri | ⊢ ( ( 4 · 𝐴 ) + 2 ) = ( 2 · ( ( 2 · 𝐴 ) + 1 ) ) |