Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | decbin.1 | ⊢ 𝐴 ∈ ℕ0 | |
Assertion | decbin3 | ⊢ ( ( 4 · 𝐴 ) + 3 ) = ( ( 2 · ( ( 2 · 𝐴 ) + 1 ) ) + 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decbin.1 | ⊢ 𝐴 ∈ ℕ0 | |
2 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
3 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
4 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
5 | 1 | decbin2 | ⊢ ( ( 4 · 𝐴 ) + 2 ) = ( 2 · ( ( 2 · 𝐴 ) + 1 ) ) |
6 | 5 | eqcomi | ⊢ ( 2 · ( ( 2 · 𝐴 ) + 1 ) ) = ( ( 4 · 𝐴 ) + 2 ) |
7 | 2 1 3 4 6 | numsuc | ⊢ ( ( 2 · ( ( 2 · 𝐴 ) + 1 ) ) + 1 ) = ( ( 4 · 𝐴 ) + 3 ) |
8 | 7 | eqcomi | ⊢ ( ( 4 · 𝐴 ) + 3 ) = ( ( 2 · ( ( 2 · 𝐴 ) + 1 ) ) + 1 ) |