Metamath Proof Explorer
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015)
(Revised by AV, 6-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
deccl.1 |
⊢ 𝐴 ∈ ℕ0 |
|
|
deccl.2 |
⊢ 𝐵 ∈ ℕ0 |
|
Assertion |
deccl |
⊢ ; 𝐴 𝐵 ∈ ℕ0 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
deccl.1 |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
deccl.2 |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
df-dec |
⊢ ; 𝐴 𝐵 = ( ( ( 9 + 1 ) · 𝐴 ) + 𝐵 ) |
4 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
5 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
6 |
4 5
|
nn0addcli |
⊢ ( 9 + 1 ) ∈ ℕ0 |
7 |
6 1 2
|
numcl |
⊢ ( ( ( 9 + 1 ) · 𝐴 ) + 𝐵 ) ∈ ℕ0 |
8 |
3 7
|
eqeltri |
⊢ ; 𝐴 𝐵 ∈ ℕ0 |