Metamath Proof Explorer


Theorem decdiv10

Description: Divide a decimal number by 10. (Contributed by Thierry Arnoux, 25-Dec-2021)

Ref Expression
Hypotheses dpval2.a 𝐴 ∈ ℕ0
dpval2.b 𝐵 ∈ ℝ
Assertion decdiv10 ( 𝐴 𝐵 / 1 0 ) = ( 𝐴 . 𝐵 )

Proof

Step Hyp Ref Expression
1 dpval2.a 𝐴 ∈ ℕ0
2 dpval2.b 𝐵 ∈ ℝ
3 1 2 dpmul10 ( ( 𝐴 . 𝐵 ) · 1 0 ) = 𝐴 𝐵
4 3 oveq1i ( ( ( 𝐴 . 𝐵 ) · 1 0 ) / 1 0 ) = ( 𝐴 𝐵 / 1 0 )
5 dpcl ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℝ ) → ( 𝐴 . 𝐵 ) ∈ ℝ )
6 1 2 5 mp2an ( 𝐴 . 𝐵 ) ∈ ℝ
7 6 recni ( 𝐴 . 𝐵 ) ∈ ℂ
8 10nn 1 0 ∈ ℕ
9 8 nncni 1 0 ∈ ℂ
10 8 nnne0i 1 0 ≠ 0
11 7 9 10 divcan4i ( ( ( 𝐴 . 𝐵 ) · 1 0 ) / 1 0 ) = ( 𝐴 . 𝐵 )
12 4 11 eqtr3i ( 𝐴 𝐵 / 1 0 ) = ( 𝐴 . 𝐵 )