Metamath Proof Explorer


Theorem deceq1

Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Assertion deceq1 ( 𝐴 = 𝐵 𝐴 𝐶 = 𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝐴 = 𝐵 → ( ( 9 + 1 ) · 𝐴 ) = ( ( 9 + 1 ) · 𝐵 ) )
2 1 oveq1d ( 𝐴 = 𝐵 → ( ( ( 9 + 1 ) · 𝐴 ) + 𝐶 ) = ( ( ( 9 + 1 ) · 𝐵 ) + 𝐶 ) )
3 df-dec 𝐴 𝐶 = ( ( ( 9 + 1 ) · 𝐴 ) + 𝐶 )
4 df-dec 𝐵 𝐶 = ( ( ( 9 + 1 ) · 𝐵 ) + 𝐶 )
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 𝐴 𝐶 = 𝐵 𝐶 )