Metamath Proof Explorer


Theorem deceq2

Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Assertion deceq2 ( 𝐴 = 𝐵 𝐶 𝐴 = 𝐶 𝐵 )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝐴 = 𝐵 → ( ( ( 9 + 1 ) · 𝐶 ) + 𝐴 ) = ( ( ( 9 + 1 ) · 𝐶 ) + 𝐵 ) )
2 df-dec 𝐶 𝐴 = ( ( ( 9 + 1 ) · 𝐶 ) + 𝐴 )
3 df-dec 𝐶 𝐵 = ( ( ( 9 + 1 ) · 𝐶 ) + 𝐵 )
4 1 2 3 3eqtr4g ( 𝐴 = 𝐵 𝐶 𝐴 = 𝐶 𝐵 )