Step |
Hyp |
Ref |
Expression |
1 |
|
decexp2.1 |
⊢ 𝑀 ∈ ℕ0 |
2 |
|
decexp2.2 |
⊢ ( 𝑀 + 2 ) = 𝑁 |
3 |
|
2cn |
⊢ 2 ∈ ℂ |
4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
5 |
4 1
|
nn0expcli |
⊢ ( 2 ↑ 𝑀 ) ∈ ℕ0 |
6 |
5
|
nn0cni |
⊢ ( 2 ↑ 𝑀 ) ∈ ℂ |
7 |
3 6
|
mulcli |
⊢ ( 2 · ( 2 ↑ 𝑀 ) ) ∈ ℂ |
8 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 2 ↑ ( 𝑀 + 1 ) ) = ( ( 2 ↑ 𝑀 ) · 2 ) ) |
9 |
3 1 8
|
mp2an |
⊢ ( 2 ↑ ( 𝑀 + 1 ) ) = ( ( 2 ↑ 𝑀 ) · 2 ) |
10 |
6 3
|
mulcomi |
⊢ ( ( 2 ↑ 𝑀 ) · 2 ) = ( 2 · ( 2 ↑ 𝑀 ) ) |
11 |
9 10
|
eqtr2i |
⊢ ( 2 · ( 2 ↑ 𝑀 ) ) = ( 2 ↑ ( 𝑀 + 1 ) ) |
12 |
11
|
oveq1i |
⊢ ( ( 2 · ( 2 ↑ 𝑀 ) ) · 2 ) = ( ( 2 ↑ ( 𝑀 + 1 ) ) · 2 ) |
13 |
7 3 12
|
mulcomli |
⊢ ( 2 · ( 2 · ( 2 ↑ 𝑀 ) ) ) = ( ( 2 ↑ ( 𝑀 + 1 ) ) · 2 ) |
14 |
5
|
decbin0 |
⊢ ( 4 · ( 2 ↑ 𝑀 ) ) = ( 2 · ( 2 · ( 2 ↑ 𝑀 ) ) ) |
15 |
|
peano2nn0 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
16 |
1 15
|
ax-mp |
⊢ ( 𝑀 + 1 ) ∈ ℕ0 |
17 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝑀 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑀 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑀 + 1 ) ) · 2 ) ) |
18 |
3 16 17
|
mp2an |
⊢ ( 2 ↑ ( ( 𝑀 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑀 + 1 ) ) · 2 ) |
19 |
13 14 18
|
3eqtr4i |
⊢ ( 4 · ( 2 ↑ 𝑀 ) ) = ( 2 ↑ ( ( 𝑀 + 1 ) + 1 ) ) |
20 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
21 |
20 5
|
nn0mulcli |
⊢ ( 4 · ( 2 ↑ 𝑀 ) ) ∈ ℕ0 |
22 |
21
|
nn0cni |
⊢ ( 4 · ( 2 ↑ 𝑀 ) ) ∈ ℂ |
23 |
22
|
addid1i |
⊢ ( ( 4 · ( 2 ↑ 𝑀 ) ) + 0 ) = ( 4 · ( 2 ↑ 𝑀 ) ) |
24 |
1
|
nn0cni |
⊢ 𝑀 ∈ ℂ |
25 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
26 |
24 25 25
|
addassi |
⊢ ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + ( 1 + 1 ) ) |
27 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
28 |
27
|
oveq2i |
⊢ ( 𝑀 + 2 ) = ( 𝑀 + ( 1 + 1 ) ) |
29 |
26 28 2
|
3eqtr2ri |
⊢ 𝑁 = ( ( 𝑀 + 1 ) + 1 ) |
30 |
29
|
oveq2i |
⊢ ( 2 ↑ 𝑁 ) = ( 2 ↑ ( ( 𝑀 + 1 ) + 1 ) ) |
31 |
19 23 30
|
3eqtr4i |
⊢ ( ( 4 · ( 2 ↑ 𝑀 ) ) + 0 ) = ( 2 ↑ 𝑁 ) |