Metamath Proof Explorer


Theorem decexp2

Description: Calculate a power of two. (Contributed by Mario Carneiro, 19-Feb-2014)

Ref Expression
Hypotheses decexp2.1 𝑀 ∈ ℕ0
decexp2.2 ( 𝑀 + 2 ) = 𝑁
Assertion decexp2 ( ( 4 · ( 2 ↑ 𝑀 ) ) + 0 ) = ( 2 ↑ 𝑁 )

Proof

Step Hyp Ref Expression
1 decexp2.1 𝑀 ∈ ℕ0
2 decexp2.2 ( 𝑀 + 2 ) = 𝑁
3 2cn 2 ∈ ℂ
4 2nn0 2 ∈ ℕ0
5 4 1 nn0expcli ( 2 ↑ 𝑀 ) ∈ ℕ0
6 5 nn0cni ( 2 ↑ 𝑀 ) ∈ ℂ
7 3 6 mulcli ( 2 · ( 2 ↑ 𝑀 ) ) ∈ ℂ
8 expp1 ( ( 2 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 2 ↑ ( 𝑀 + 1 ) ) = ( ( 2 ↑ 𝑀 ) · 2 ) )
9 3 1 8 mp2an ( 2 ↑ ( 𝑀 + 1 ) ) = ( ( 2 ↑ 𝑀 ) · 2 )
10 6 3 mulcomi ( ( 2 ↑ 𝑀 ) · 2 ) = ( 2 · ( 2 ↑ 𝑀 ) )
11 9 10 eqtr2i ( 2 · ( 2 ↑ 𝑀 ) ) = ( 2 ↑ ( 𝑀 + 1 ) )
12 11 oveq1i ( ( 2 · ( 2 ↑ 𝑀 ) ) · 2 ) = ( ( 2 ↑ ( 𝑀 + 1 ) ) · 2 )
13 7 3 12 mulcomli ( 2 · ( 2 · ( 2 ↑ 𝑀 ) ) ) = ( ( 2 ↑ ( 𝑀 + 1 ) ) · 2 )
14 5 decbin0 ( 4 · ( 2 ↑ 𝑀 ) ) = ( 2 · ( 2 · ( 2 ↑ 𝑀 ) ) )
15 peano2nn0 ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ0 )
16 1 15 ax-mp ( 𝑀 + 1 ) ∈ ℕ0
17 expp1 ( ( 2 ∈ ℂ ∧ ( 𝑀 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑀 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑀 + 1 ) ) · 2 ) )
18 3 16 17 mp2an ( 2 ↑ ( ( 𝑀 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑀 + 1 ) ) · 2 )
19 13 14 18 3eqtr4i ( 4 · ( 2 ↑ 𝑀 ) ) = ( 2 ↑ ( ( 𝑀 + 1 ) + 1 ) )
20 4nn0 4 ∈ ℕ0
21 20 5 nn0mulcli ( 4 · ( 2 ↑ 𝑀 ) ) ∈ ℕ0
22 21 nn0cni ( 4 · ( 2 ↑ 𝑀 ) ) ∈ ℂ
23 22 addid1i ( ( 4 · ( 2 ↑ 𝑀 ) ) + 0 ) = ( 4 · ( 2 ↑ 𝑀 ) )
24 1 nn0cni 𝑀 ∈ ℂ
25 ax-1cn 1 ∈ ℂ
26 24 25 25 addassi ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + ( 1 + 1 ) )
27 df-2 2 = ( 1 + 1 )
28 27 oveq2i ( 𝑀 + 2 ) = ( 𝑀 + ( 1 + 1 ) )
29 26 28 2 3eqtr2ri 𝑁 = ( ( 𝑀 + 1 ) + 1 )
30 29 oveq2i ( 2 ↑ 𝑁 ) = ( 2 ↑ ( ( 𝑀 + 1 ) + 1 ) )
31 19 23 30 3eqtr4i ( ( 4 · ( 2 ↑ 𝑀 ) ) + 0 ) = ( 2 ↑ 𝑁 )