Metamath Proof Explorer
		
		
		
		Description:  Comparing two decimal integers (equal higher places).  (Contributed by AV, 17-Aug-2021)  (Revised by AV, 8-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | decle.1 | ⊢ 𝐴  ∈  ℕ0 | 
					
						|  |  | decle.2 | ⊢ 𝐵  ∈  ℕ0 | 
					
						|  |  | decle.3 | ⊢ 𝐶  ∈  ℕ0 | 
					
						|  |  | decle.4 | ⊢ 𝐵  ≤  𝐶 | 
				
					|  | Assertion | decle | ⊢  ; 𝐴 𝐵  ≤  ; 𝐴 𝐶 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decle.1 | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | decle.2 | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 3 |  | decle.3 | ⊢ 𝐶  ∈  ℕ0 | 
						
							| 4 |  | decle.4 | ⊢ 𝐵  ≤  𝐶 | 
						
							| 5 | 2 | nn0rei | ⊢ 𝐵  ∈  ℝ | 
						
							| 6 | 3 | nn0rei | ⊢ 𝐶  ∈  ℝ | 
						
							| 7 |  | 10nn0 | ⊢ ; 1 0  ∈  ℕ0 | 
						
							| 8 | 7 1 | nn0mulcli | ⊢ ( ; 1 0  ·  𝐴 )  ∈  ℕ0 | 
						
							| 9 | 8 | nn0rei | ⊢ ( ; 1 0  ·  𝐴 )  ∈  ℝ | 
						
							| 10 | 5 6 9 | leadd2i | ⊢ ( 𝐵  ≤  𝐶  ↔  ( ( ; 1 0  ·  𝐴 )  +  𝐵 )  ≤  ( ( ; 1 0  ·  𝐴 )  +  𝐶 ) ) | 
						
							| 11 | 4 10 | mpbi | ⊢ ( ( ; 1 0  ·  𝐴 )  +  𝐵 )  ≤  ( ( ; 1 0  ·  𝐴 )  +  𝐶 ) | 
						
							| 12 |  | dfdec10 | ⊢ ; 𝐴 𝐵  =  ( ( ; 1 0  ·  𝐴 )  +  𝐵 ) | 
						
							| 13 |  | dfdec10 | ⊢ ; 𝐴 𝐶  =  ( ( ; 1 0  ·  𝐴 )  +  𝐶 ) | 
						
							| 14 | 11 12 13 | 3brtr4i | ⊢ ; 𝐴 𝐵  ≤  ; 𝐴 𝐶 |