Metamath Proof Explorer
		
		
		
		Description:  Comparing two decimal integers (unequal higher places).  (Contributed by AV, 17-Aug-2021)  (Revised by AV, 8-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | decle.1 | ⊢ 𝐴  ∈  ℕ0 | 
					
						|  |  | decle.2 | ⊢ 𝐵  ∈  ℕ0 | 
					
						|  |  | decle.3 | ⊢ 𝐶  ∈  ℕ0 | 
					
						|  |  | decleh.4 | ⊢ 𝐷  ∈  ℕ0 | 
					
						|  |  | decleh.5 | ⊢ 𝐶  ≤  9 | 
					
						|  |  | decleh.6 | ⊢ 𝐴  <  𝐵 | 
				
					|  | Assertion | decleh | ⊢  ; 𝐴 𝐶  ≤  ; 𝐵 𝐷 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decle.1 | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | decle.2 | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 3 |  | decle.3 | ⊢ 𝐶  ∈  ℕ0 | 
						
							| 4 |  | decleh.4 | ⊢ 𝐷  ∈  ℕ0 | 
						
							| 5 |  | decleh.5 | ⊢ 𝐶  ≤  9 | 
						
							| 6 |  | decleh.6 | ⊢ 𝐴  <  𝐵 | 
						
							| 7 | 1 3 | deccl | ⊢ ; 𝐴 𝐶  ∈  ℕ0 | 
						
							| 8 | 7 | nn0rei | ⊢ ; 𝐴 𝐶  ∈  ℝ | 
						
							| 9 | 2 4 | deccl | ⊢ ; 𝐵 𝐷  ∈  ℕ0 | 
						
							| 10 | 9 | nn0rei | ⊢ ; 𝐵 𝐷  ∈  ℝ | 
						
							| 11 | 1 2 3 4 5 6 | declth | ⊢ ; 𝐴 𝐶  <  ; 𝐵 𝐷 | 
						
							| 12 | 8 10 11 | ltleii | ⊢ ; 𝐴 𝐶  ≤  ; 𝐵 𝐷 |