Metamath Proof Explorer
Description: Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015) (Revised by AV, 6-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
declt.a |
⊢ 𝐴 ∈ ℕ0 |
|
|
declt.b |
⊢ 𝐵 ∈ ℕ0 |
|
|
declt.c |
⊢ 𝐶 ∈ ℕ |
|
|
declt.l |
⊢ 𝐵 < 𝐶 |
|
Assertion |
declt |
⊢ ; 𝐴 𝐵 < ; 𝐴 𝐶 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
declt.a |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
declt.b |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
declt.c |
⊢ 𝐶 ∈ ℕ |
| 4 |
|
declt.l |
⊢ 𝐵 < 𝐶 |
| 5 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
| 6 |
5 1 2 3 4
|
numlt |
⊢ ( ( ; 1 0 · 𝐴 ) + 𝐵 ) < ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
| 7 |
|
dfdec10 |
⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 8 |
|
dfdec10 |
⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
| 9 |
6 7 8
|
3brtr4i |
⊢ ; 𝐴 𝐵 < ; 𝐴 𝐶 |