Metamath Proof Explorer


Theorem declt

Description: Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Hypotheses declt.a 𝐴 ∈ ℕ0
declt.b 𝐵 ∈ ℕ0
declt.c 𝐶 ∈ ℕ
declt.l 𝐵 < 𝐶
Assertion declt 𝐴 𝐵 < 𝐴 𝐶

Proof

Step Hyp Ref Expression
1 declt.a 𝐴 ∈ ℕ0
2 declt.b 𝐵 ∈ ℕ0
3 declt.c 𝐶 ∈ ℕ
4 declt.l 𝐵 < 𝐶
5 10nn 1 0 ∈ ℕ
6 5 1 2 3 4 numlt ( ( 1 0 · 𝐴 ) + 𝐵 ) < ( ( 1 0 · 𝐴 ) + 𝐶 )
7 dfdec10 𝐴 𝐵 = ( ( 1 0 · 𝐴 ) + 𝐵 )
8 dfdec10 𝐴 𝐶 = ( ( 1 0 · 𝐴 ) + 𝐶 )
9 6 7 8 3brtr4i 𝐴 𝐵 < 𝐴 𝐶