Metamath Proof Explorer
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
declt.a |
⊢ 𝐴 ∈ ℕ0 |
|
|
declt.b |
⊢ 𝐵 ∈ ℕ0 |
|
|
decltc.c |
⊢ 𝐶 ∈ ℕ0 |
|
|
decltc.d |
⊢ 𝐷 ∈ ℕ0 |
|
|
decltc.s |
⊢ 𝐶 < ; 1 0 |
|
|
decltc.l |
⊢ 𝐴 < 𝐵 |
|
Assertion |
decltc |
⊢ ; 𝐴 𝐶 < ; 𝐵 𝐷 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
declt.a |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
declt.b |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
decltc.c |
⊢ 𝐶 ∈ ℕ0 |
| 4 |
|
decltc.d |
⊢ 𝐷 ∈ ℕ0 |
| 5 |
|
decltc.s |
⊢ 𝐶 < ; 1 0 |
| 6 |
|
decltc.l |
⊢ 𝐴 < 𝐵 |
| 7 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
| 8 |
7 1 2 3 4 5 6
|
numltc |
⊢ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) < ( ( ; 1 0 · 𝐵 ) + 𝐷 ) |
| 9 |
|
dfdec10 |
⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
| 10 |
|
dfdec10 |
⊢ ; 𝐵 𝐷 = ( ( ; 1 0 · 𝐵 ) + 𝐷 ) |
| 11 |
8 9 10
|
3brtr4i |
⊢ ; 𝐴 𝐶 < ; 𝐵 𝐷 |