Metamath Proof Explorer
		
		
		
		Description:  Comparing two decimal integers (unequal higher places).  (Contributed by AV, 8-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | declt.a | ⊢ 𝐴  ∈  ℕ0 | 
					
						|  |  | declt.b | ⊢ 𝐵  ∈  ℕ0 | 
					
						|  |  | declth.c | ⊢ 𝐶  ∈  ℕ0 | 
					
						|  |  | declth.d | ⊢ 𝐷  ∈  ℕ0 | 
					
						|  |  | declth.e | ⊢ 𝐶  ≤  9 | 
					
						|  |  | declth.l | ⊢ 𝐴  <  𝐵 | 
				
					|  | Assertion | declth | ⊢  ; 𝐴 𝐶  <  ; 𝐵 𝐷 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | declt.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | declt.b | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 3 |  | declth.c | ⊢ 𝐶  ∈  ℕ0 | 
						
							| 4 |  | declth.d | ⊢ 𝐷  ∈  ℕ0 | 
						
							| 5 |  | declth.e | ⊢ 𝐶  ≤  9 | 
						
							| 6 |  | declth.l | ⊢ 𝐴  <  𝐵 | 
						
							| 7 | 3 5 | le9lt10 | ⊢ 𝐶  <  ; 1 0 | 
						
							| 8 | 1 2 3 4 7 6 | decltc | ⊢ ; 𝐴 𝐶  <  ; 𝐵 𝐷 |