Metamath Proof Explorer
Description: Comparing a digit to a decimal integer. (Contributed by Mario
Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
declti.a |
⊢ 𝐴 ∈ ℕ |
|
|
declti.b |
⊢ 𝐵 ∈ ℕ0 |
|
|
declti.c |
⊢ 𝐶 ∈ ℕ0 |
|
|
declti.l |
⊢ 𝐶 < ; 1 0 |
|
Assertion |
declti |
⊢ 𝐶 < ; 𝐴 𝐵 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
declti.a |
⊢ 𝐴 ∈ ℕ |
2 |
|
declti.b |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
declti.c |
⊢ 𝐶 ∈ ℕ0 |
4 |
|
declti.l |
⊢ 𝐶 < ; 1 0 |
5 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
6 |
5 1 2 3 4
|
numlti |
⊢ 𝐶 < ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
7 |
|
dfdec10 |
⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
8 |
6 7
|
breqtrri |
⊢ 𝐶 < ; 𝐴 𝐵 |