| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decma.a |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
decma.b |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
decma.c |
⊢ 𝐶 ∈ ℕ0 |
| 4 |
|
decma.d |
⊢ 𝐷 ∈ ℕ0 |
| 5 |
|
decma.m |
⊢ 𝑀 = ; 𝐴 𝐵 |
| 6 |
|
decma.n |
⊢ 𝑁 = ; 𝐶 𝐷 |
| 7 |
|
decma2c.p |
⊢ 𝑃 ∈ ℕ0 |
| 8 |
|
decma2c.f |
⊢ 𝐹 ∈ ℕ0 |
| 9 |
|
decma2c.g |
⊢ 𝐺 ∈ ℕ0 |
| 10 |
|
decma2c.e |
⊢ ( ( 𝑃 · 𝐴 ) + ( 𝐶 + 𝐺 ) ) = 𝐸 |
| 11 |
|
decma2c.2 |
⊢ ( ( 𝑃 · 𝐵 ) + 𝐷 ) = ; 𝐺 𝐹 |
| 12 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
| 13 |
|
dfdec10 |
⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 14 |
5 13
|
eqtri |
⊢ 𝑀 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 15 |
|
dfdec10 |
⊢ ; 𝐶 𝐷 = ( ( ; 1 0 · 𝐶 ) + 𝐷 ) |
| 16 |
6 15
|
eqtri |
⊢ 𝑁 = ( ( ; 1 0 · 𝐶 ) + 𝐷 ) |
| 17 |
|
dfdec10 |
⊢ ; 𝐺 𝐹 = ( ( ; 1 0 · 𝐺 ) + 𝐹 ) |
| 18 |
11 17
|
eqtri |
⊢ ( ( 𝑃 · 𝐵 ) + 𝐷 ) = ( ( ; 1 0 · 𝐺 ) + 𝐹 ) |
| 19 |
12 1 2 3 4 14 16 7 8 9 10 18
|
numma2c |
⊢ ( ( 𝑃 · 𝑀 ) + 𝑁 ) = ( ( ; 1 0 · 𝐸 ) + 𝐹 ) |
| 20 |
|
dfdec10 |
⊢ ; 𝐸 𝐹 = ( ( ; 1 0 · 𝐸 ) + 𝐹 ) |
| 21 |
19 20
|
eqtr4i |
⊢ ( ( 𝑃 · 𝑀 ) + 𝑁 ) = ; 𝐸 𝐹 |