Database
REAL AND COMPLEX NUMBERS
Integer sets
Decimal arithmetic
decmul1
Metamath Proof Explorer
Description: The product of a numeral with a number (no carry). (Contributed by AV , 22-Jul-2021) (Revised by AV , 6-Sep-2021) Remove hypothesis
D e. NN0 . (Revised by Steven Nguyen , 7-Dec-2022)
Ref
Expression
Hypotheses
decmul1.p
⊢ 𝑃 ∈ ℕ0
decmul1.a
⊢ 𝐴 ∈ ℕ0
decmul1.b
⊢ 𝐵 ∈ ℕ0
decmul1.n
⊢ 𝑁 = ; 𝐴 𝐵
decmul1.c
⊢ ( 𝐴 · 𝑃 ) = 𝐶
decmul1.d
⊢ ( 𝐵 · 𝑃 ) = 𝐷
Assertion
decmul1
⊢ ( 𝑁 · 𝑃 ) = ; 𝐶 𝐷
Proof
Step
Hyp
Ref
Expression
1
decmul1.p
⊢ 𝑃 ∈ ℕ0
2
decmul1.a
⊢ 𝐴 ∈ ℕ0
3
decmul1.b
⊢ 𝐵 ∈ ℕ0
4
decmul1.n
⊢ 𝑁 = ; 𝐴 𝐵
5
decmul1.c
⊢ ( 𝐴 · 𝑃 ) = 𝐶
6
decmul1.d
⊢ ( 𝐵 · 𝑃 ) = 𝐷
7
2 3
deccl
⊢ ; 𝐴 𝐵 ∈ ℕ0
8
4 7
eqeltri
⊢ 𝑁 ∈ ℕ0
9
8 1
num0u
⊢ ( 𝑁 · 𝑃 ) = ( ( 𝑁 · 𝑃 ) + 0 )
10
0nn0
⊢ 0 ∈ ℕ0
11
3 1
nn0mulcli
⊢ ( 𝐵 · 𝑃 ) ∈ ℕ0
12
11
nn0cni
⊢ ( 𝐵 · 𝑃 ) ∈ ℂ
13
12
addid1i
⊢ ( ( 𝐵 · 𝑃 ) + 0 ) = ( 𝐵 · 𝑃 )
14
13 6
eqtri
⊢ ( ( 𝐵 · 𝑃 ) + 0 ) = 𝐷
15
2 3 10 4 1 5 14
decrmanc
⊢ ( ( 𝑁 · 𝑃 ) + 0 ) = ; 𝐶 𝐷
16
9 15
eqtri
⊢ ( 𝑁 · 𝑃 ) = ; 𝐶 𝐷