Metamath Proof Explorer
		
		
		
		Description:  The product of a numeral with a number (no carry).  (Contributed by AV, 15-Jun-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | decmulnc.n | ⊢ 𝑁  ∈  ℕ0 | 
					
						|  |  | decmulnc.a | ⊢ 𝐴  ∈  ℕ0 | 
					
						|  |  | decmulnc.b | ⊢ 𝐵  ∈  ℕ0 | 
				
					|  | Assertion | decmulnc | ⊢  ( 𝑁  ·  ; 𝐴 𝐵 )  =  ; ( 𝑁  ·  𝐴 ) ( 𝑁  ·  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decmulnc.n | ⊢ 𝑁  ∈  ℕ0 | 
						
							| 2 |  | decmulnc.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 3 |  | decmulnc.b | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 4 |  | eqid | ⊢ ; 𝐴 𝐵  =  ; 𝐴 𝐵 | 
						
							| 5 | 1 3 | nn0mulcli | ⊢ ( 𝑁  ·  𝐵 )  ∈  ℕ0 | 
						
							| 6 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 7 | 1 2 | nn0mulcli | ⊢ ( 𝑁  ·  𝐴 )  ∈  ℕ0 | 
						
							| 8 | 7 | nn0cni | ⊢ ( 𝑁  ·  𝐴 )  ∈  ℂ | 
						
							| 9 | 8 | addridi | ⊢ ( ( 𝑁  ·  𝐴 )  +  0 )  =  ( 𝑁  ·  𝐴 ) | 
						
							| 10 | 5 | dec0h | ⊢ ( 𝑁  ·  𝐵 )  =  ; 0 ( 𝑁  ·  𝐵 ) | 
						
							| 11 | 1 2 3 4 5 6 9 10 | decmul2c | ⊢ ( 𝑁  ·  ; 𝐴 𝐵 )  =  ; ( 𝑁  ·  𝐴 ) ( 𝑁  ·  𝐵 ) |