Metamath Proof Explorer
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015)
(Revised by AV, 6-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
decnncl.1 |
⊢ 𝐴 ∈ ℕ0 |
|
|
decnncl.2 |
⊢ 𝐵 ∈ ℕ |
|
Assertion |
decnncl |
⊢ ; 𝐴 𝐵 ∈ ℕ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
decnncl.1 |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
decnncl.2 |
⊢ 𝐵 ∈ ℕ |
3 |
|
dfdec10 |
⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
4 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
5 |
4 1 2
|
numnncl |
⊢ ( ( ; 1 0 · 𝐴 ) + 𝐵 ) ∈ ℕ |
6 |
3 5
|
eqeltri |
⊢ ; 𝐴 𝐵 ∈ ℕ |