Metamath Proof Explorer


Theorem decnncl2

Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Hypothesis decnncl2.1 𝐴 ∈ ℕ
Assertion decnncl2 𝐴 0 ∈ ℕ

Proof

Step Hyp Ref Expression
1 decnncl2.1 𝐴 ∈ ℕ
2 dfdec10 𝐴 0 = ( ( 1 0 · 𝐴 ) + 0 )
3 10nn 1 0 ∈ ℕ
4 3 1 numnncl2 ( ( 1 0 · 𝐴 ) + 0 ) ∈ ℕ
5 2 4 eqeltri 𝐴 0 ∈ ℕ