Step |
Hyp |
Ref |
Expression |
1 |
|
decpmate.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
decpmate.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
decpmate.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
decpmatcl.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
5 |
|
decpmatfsupp.0 |
⊢ 0 = ( 0g ‘ 𝐴 ) |
6 |
2 3
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ V ) ) |
7 |
6
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
8 |
7
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
9 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
10 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
12 |
1 2 3 11
|
pmatcoe1fsupp |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
13 |
8 9 10 12
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
15 |
1 2 3 4 14
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑥 ) ∈ ( Base ‘ 𝐴 ) ) |
16 |
15
|
3expa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑥 ) ∈ ( Base ‘ 𝐴 ) ) |
17 |
8 9
|
jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
18 |
4
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
19 |
14 5
|
ring0cl |
⊢ ( 𝐴 ∈ Ring → 0 ∈ ( Base ‘ 𝐴 ) ) |
20 |
17 18 19
|
3syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 0 ∈ ( Base ‘ 𝐴 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → 0 ∈ ( Base ‘ 𝐴 ) ) |
22 |
4 14
|
eqmat |
⊢ ( ( ( 𝑀 decompPMat 𝑥 ) ∈ ( Base ‘ 𝐴 ) ∧ 0 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑀 decompPMat 𝑥 ) = 0 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) = ( 𝑖 0 𝑗 ) ) ) |
23 |
16 21 22
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑀 decompPMat 𝑥 ) = 0 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) = ( 𝑖 0 𝑗 ) ) ) |
24 |
|
df-3an |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈ ℕ0 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ) |
25 |
1 2 3
|
decpmate |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) ) |
26 |
24 25
|
sylanbr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) ) |
27 |
17
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
28 |
27
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
29 |
4 11
|
mat0op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
30 |
5 29
|
syl5eq |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 0 = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
31 |
28 30
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 0 = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
32 |
|
eqidd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 = 𝑖 ∧ 𝑏 = 𝑗 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
33 |
|
simpl |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
34 |
33
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑖 ∈ 𝑁 ) |
35 |
|
simpr |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
36 |
35
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑗 ∈ 𝑁 ) |
37 |
|
fvexd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) |
38 |
31 32 34 36 37
|
ovmpod |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 0 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
39 |
26 38
|
eqeq12d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) = ( 𝑖 0 𝑗 ) ↔ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
40 |
39
|
2ralbidva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) = ( 𝑖 0 𝑗 ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
41 |
23 40
|
bitrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑀 decompPMat 𝑥 ) = 0 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
42 |
41
|
imbi2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑠 < 𝑥 → ( 𝑀 decompPMat 𝑥 ) = 0 ) ↔ ( 𝑠 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
43 |
42
|
ralbidva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝑀 decompPMat 𝑥 ) = 0 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
44 |
43
|
rexbidv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝑀 decompPMat 𝑥 ) = 0 ) ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
45 |
13 44
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝑀 decompPMat 𝑥 ) = 0 ) ) |