Step |
Hyp |
Ref |
Expression |
1 |
|
decpmate.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
decpmate.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
decpmate.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
decpmatcl.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
5 |
|
decpmatcl.d |
⊢ 𝐷 = ( Base ‘ 𝐴 ) |
6 |
2 3
|
decpmatval |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
2 3
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ V ) ) |
10 |
9
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
12 |
|
simp1 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → 𝑅 ∈ 𝑉 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
14 |
|
simp2 |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
15 |
|
simp3 |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
16 |
|
simp2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ∈ 𝐵 ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑀 ∈ 𝐵 ) |
18 |
2 13 3 14 15 17
|
matecld |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑀 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
19 |
|
simp3 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝐾 ∈ ℕ0 ) |
21 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) |
22 |
21 13 1 8
|
coe1fvalcl |
⊢ ( ( ( 𝑖 𝑀 𝑗 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ∈ ( Base ‘ 𝑅 ) ) |
23 |
18 20 22
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ∈ ( Base ‘ 𝑅 ) ) |
24 |
4 8 5 11 12 23
|
matbas2d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ∈ 𝐷 ) |
25 |
7 24
|
eqeltrd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) ∈ 𝐷 ) |